Critical abiotic factors affecting implementation of technologicalinnovations in rice and wheat production: A review

2016 ◽  
Vol 37 (4) ◽  
Author(s):  
S. Kumaraswamy ◽  
P. K. Shetty

Rice and wheat are two major staple food crops in India and worldwide. Over the years the yield potential of the crops has been affected by abiotic factors, which is further projected to increase due to climate change induced environmental adversities. Typically these two crops have different growing conditions, rice requiring high water for cultivation unlike wheat which is water demanding and sensitive to larger variability in temperature regimes. In the recent past drought and disease stress, besides several other stresses, are considered to be critical factors affecting the growth and yield of crops, which is evident in the recent decades. Admittedly, drought stress coupled with biotic stress will further contribute for declining performance of crop varieties and difficult to alleviate even with innovative technological innovations. Few of the technological innovations like high yielding varieties, genetically modified cultivars, integrated nutrient management, integrated pest management, water conservation strategies and prophylactic measures to avoid the disease/pest outbreak, though with potential to augment the yield losses is affected by the stresses. Attempts have also been made to utilize transgenic technologies to build intrinsic tolerance mechanisms by the plants through alteration to functional genes. However, sustainable technologies like classical breeding approaches and integrated farming principles are also being considered to develop crops adaptation and/or enhance the adaptive mechanisms by aligning with technological interventions. Though, several technologies show promise but constrained by the limitations to achieve ‘one-fits-all’ model to overcome the interactive effects of abiotic stressors. Visibly, the crop growth and yield enhancement through technological innovations is call of the day as climate change induced aggravation of these stressors on crop production is imminent. Skilful integration of technological innovations to suit the local and regional scale crop husbandry systems may have promise to address the abiotic stress to realize economic yield of crops like rice and wheat. The review will argumentatively analyse few critical stressors that limit the successful implementation of technological innovations to sustain the rice/wheat crop production and resilience building in the millennia.

Author(s):  
Upasana Dutta

The agriculture sector is reeling under the pressures of population, land and water scarcity, diseases, disasters and the most challenging of them all, climate change. Although climate change is yet to be charged with affecting agriculture, but in recent years trends of change have been witnessed in various crop production, with a hint of climate's role in it. With the advent of technology, these trends have become easier to analyse and in certain cases predict too. Information Technology (ICT) tools like Geoinformatics are playing a profound role in the agriculture sector and is helping to understand and assess the various factors affecting the growth of crops along with finding out the alternative suitability parameters for better production and distribution. The main aim of this chapter on agro-geoinformatics is to look into this linkage between technology usage and better potato production during adverse conditions.


Author(s):  
Abul Khayer ◽  
Fatiha Sultana Eti ◽  
Md. Mohibul Hasan ◽  
Md. Khairul Bashar Biplob ◽  
Rabiul Haq Chowdhury ◽  
...  

An opinion dependent cross sectional survey was conducted among charland peoples of Noakhali, Bangladesh with a view to identify the factors that affect green economy. Nijhumdwip Island and Tamaruddi union are highly affected by cyclone and soil salinity. Unpredictable rainfall is the most acute in Nijhumdwip. Lack of information the main problem in Nijhumdwip Island. Farmers are found less interest in integrated farming and crop diversification. Few farmers from Sonadia Union are involved in homestead gardening. Regression analysis have shown a negative relationship (p<0.001) between education of stockholders and decrease of crop production. On the other hand education level of stockholders is to be found positively (p<0.05) varied with decrease of food insecurity. So it can be said that educated farmers are more adaptive against climate change.


Author(s):  
Subhas Chandra Bastola

The purpose of this study is to quantify species diversity of birds in the study area and to explore the biotic and abiotic factors affecting the bird population. This study was carried out by using the fixed point counting method. The study area was situated in Annapurna Rural Municipality of Kaski district. A total of 147 bird species belonging to 46 families and 14 orders were identified in the study area. It was found that Muscicapidae was the largest family and Passeriformes the largest order. Among the reported species, 50% were residents, 31% were full-migrants, 18% were altitudinal migrants and the remaining were 1% nomadic. Habitats of birds included the forest 68%, the scrubland 17 %, the grassland 7% and the wetland 6 % of the study area. Similarly, the rocky area and artificial area covered 1% of the total species. The results showed that most of the bird species i.e. 136 were least concerned, 4 of them were nearly threatened, 3 of them were endangered, 3 were critically endangered and only one species was vulnerable. The most important threats included hunting and trapping, killing for fun, shift in crop production, use of insecticides and pesticides, improved storage devices, habitat destruction, developmental activities, tourism, buried carcasses and predatory.


2019 ◽  
Vol 52 (3) ◽  
pp. 312-319
Author(s):  
A. JAMAL ◽  
D. MUHAMMAD ◽  
M. FAWAD

Soil fertility and maximum crop production can only be achieved through proper fertilization. Proper and balanced fertilization have a considerably positive effect on plant growth and yield. Due to continuous use of chemical fertilizers, the organic matter and nutrient content of the soil decreased gradually. Therefore, in modern era, agriculture scientists are now engaged to establish an agricultural system, which can not only lower the production cost, but also conserve the natural resources. Soil, as a source of nutrients, must be protected from various kinds of external factors, especially from the addition of fertilizers in excessive rates. Any degradation in the quality of soil can significantly produce many undesirable changes in the environment and also reduces the overall crop yield. So, the concoction of organic and inorganic fertilization is an alternative and most effective method for sustainable and cost-effective management for maximum crop production, without effecting the environment. The Integrated Nutrient Management provides an excellent opportunity not only for sustainability of the soil, but also enhances the overall crop productivity. The present review study was carried out with the main aim to evaluate the role of combined application of organic and inorganic fertilizers on wheat crop production. The outcome of the study concluded that combined application of both organic and inorganic fertilizers significantly improve the wheat crop production, as compared with the sole application of either organic or inorganic fertilizers.


2020 ◽  
Vol 41 (01) ◽  
Author(s):  
Amare Aleminew ◽  
Merkuz Abera

Climate change is a recent challenge on crop production and productivity in the world. The objective of this paper is to review the major effects of climate change on the production and productivity of wheat in the high lands of Ethiopia. Effects of climate change on wheat would be mainly through changes in [CO2], temperature, rainfall, length of growing period, actual growth rate and increased evapo-transpiration, which may lead to reduce yield or complete crop failure. Moreover, flower fertilization and grain set are highly sensitive to heat stress during mid-anthesis. In C3 crops like wheat, the elevated CO2 level is expected to increase productivity as a result of higher CO2 diffusion through stomata leading to a higher photosynthesis rate. But, elevated [CO2] may have negative effects on the grain-quality of wheat in terms of protein, lipids, number of mitochondria and nitrogen contents. Unlike CO2, elevated temperature affects crop production negatively by increasing rate of respiration; hastening plant growth and development; increasing photorespiration of wheat, reducing photosynthetic efficiency due to O2 interrupts the photosynthetic path way instead of CO2, increasing rate of water loss by increasing evapo-transpiration and decreasing nutrient use-efficiency through increased rate of decomposition and mineralization. As a result, wheat area is forecast to be displaced by other crop types. In order to tackle this issue, major mitigation and adaptation measures for example promoting area closures and conservation agriculture-based (CA), agroforestry practices, efficient use of energy sources, etc. should be practiced and given special attention by the communities as well as the government to solve the effects of climate change on wheat production and productivity in the country.


2008 ◽  
Vol 18 (3-4) ◽  
pp. 171 ◽  
Author(s):  
P. PELTONEN-SAINIO ◽  
L. JAUHIAINEN ◽  
K. HAKALA

Climate change offers new opportunities for Finnish field crop production, which is currently limited by the short growing season. A warmer climate will extend the thermal growing season and the physiologically effective part of it. Winters will also become milder, enabling introduction of winter-sown crops to a greater extent than is possible today. With this study we aim to characterise the likely regional differences in capacity to grow different seed producing crops. Prolongation of the Finnish growing season was estimated using a 0.5º latitude × 0.5º longitude gridded dataset from the Finnish Meteorological Institute. The dataset comprised an average estimate from 19 global climate models of the response of Finnish climate to low (B1) and high (A2) scenarios of greenhouse gas and aerosol emissions for 30-year periods centred on 2025, 2055 and 2085 (Intergovernmental Panel on Climate Change). Growing season temperature sums that suit crop growth and are agronomically feasible in Finland are anticipated to increase by some 140 °Cd by 2025, 300 °Cd by 2055 and 470 °Cd by 2085 in scenario A2, when averaged over regions, and earlier sowing is expected to take place, but not later harvests. Accordingly, the extent of cultivable areas for the commonly grown major and minor crops will increase considerably. Due to the higher base temperature requirement for maize (Zea mays L.) growth than for temperate crops, we estimate that silage maize could become a Finnish field crop for the most favourable growing regions only at the end of this century. Winters are getting milder, but it will take almost the whole century until winters such as those that are typical for southern Sweden and Denmark are experienced on a wide scale in Finland. It is possible that introduction of winter-sown crops (cereals and rapeseed) will represent major risks due to fluctuating winter conditions, and this could delay their adaptation for many decades. Such risks need to be studied in more detail to estimate timing of introduction. Prolonged physiologically effective growing seasons would increase yielding capacities of major field crops. Of the current minor crops, oilseed rape (Brassica napus L.), winter wheat (Triticum aestivum L.), triticale (X Triticosecale Wittmack), pea (Pisum sativum L.) and faba bean (Vicia faba L.) are particularly strong candidates to become major crops. Moreover, they have good potential for industrial processing and are currently being bred. Realisation of increased yield potential requires adaptation to 1) elevated daily mean temperatures that interfere with development rate of seed crops under long days, 2) relative reductions in water availability at critical phases of yield determination, 3) greater pest and disease pressure, 4) other uncertainties caused by weather extremes and 5) generally greater need for inputs such as nitrogen fertilisers for non-nitrogen fixing crops.;


2019 ◽  
pp. 1457-1476
Author(s):  
Upasana Dutta

The agriculture sector is reeling under the pressures of population, land and water scarcity, diseases, disasters and the most challenging of them all, climate change. Although climate change is yet to be charged with affecting agriculture, but in recent years trends of change have been witnessed in various crop production, with a hint of climate's role in it. With the advent of technology, these trends have become easier to analyse and in certain cases predict too. Information Technology (ICT) tools like Geoinformatics are playing a profound role in the agriculture sector and is helping to understand and assess the various factors affecting the growth of crops along with finding out the alternative suitability parameters for better production and distribution. The main aim of this chapter on agro-geoinformatics is to look into this linkage between technology usage and better potato production during adverse conditions.


2020 ◽  
Vol 27 (2) ◽  
pp. 47-59 ◽  
Author(s):  
Muhammad Usman ◽  
Ghulam Murtaza ◽  
Allah Ditta ◽  
Tamana Bakht ◽  
Muhammad Asif ◽  
...  

Weed infestation is among the main biotic factors affecting growth and yield of various crops. This issue is more drastic for cereal crops like wheat which is the staple food crop of over 2.5 billion population of the world. One the control strategy is the investigated the distribution pattern of weeds under field conditions. In this regard, a survey study was conducted to investigate the distribution pattern of weed species in wheat crop during 2016-18 in district Khanewal, Punjab Pakistan. Thirty-six weed species distributed among fifteen different families collected from the study area. Family Poaceae was dominant with 10 species while family Asteraceae was the second most dominant family with four weed species. Cynadon dactylon was the most frequently found specie with frequency value 79.1% while Paspalum distichum had the highest importance value index (6.96) among the weeds of the study area.


2021 ◽  
Vol 13 (4) ◽  
pp. 2253
Author(s):  
Maria Mussarat ◽  
Muhammad Shair ◽  
Dost Muhammad ◽  
Ishaq Ahmad Mian ◽  
Shadman Khan ◽  
...  

Nitrogen (N) and Phosphorus (P) deficiency is a major yield limiting factor across the globe and their proper management plays a vital role in optimizing crop yield. This field experiment was conducted to assess the impact of soil and plant nitrogen N and P ratio on the growth and yield of wheat (Triticum aestivum L.) in alkaline calcareous soil. The study consisted of various levels of nitrogen (0, 40, 80, and 160 kg ha−1 as urea) and phosphorus (0, 30, 60, and 90 kg P2O5 ha−1 as diammonium phosphate), and was carried out in randomized complete block design (RCBD) with factorial arrangement having three replications. The result showed that the addition of 160 kg N ha−1 significantly improved biological yield (10,052 kg ha−1), grain weight (3120 kg ha−1), chlorophyll content at tillering stage soil plant analysis development (SPAD) value (35.38), N uptake in straw (33.42 kg ha−1), and K uptake in straw (192 kg ha−1) compared to other N levels. In case of P, 90 kg P2O5 ha−1 had resulted maximum biological yield (9852 kg ha−1), grain yield (3663 kg ha−1), chlorophyll content at tillering stage (SPAD value 34.36), P (6.68 mg kg−1) and K (171 kg ha−1) uptake in straw. The sole use of N and P have positively influenced the biological and grain yield but their interaction didn’t response to biological yield. The present study reveals that SPAD value (chlorophyll meter) is the better choice for determining plant N and P concentrations to estimate the yield potential.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 158 ◽  
Author(s):  
Joanna Reinhold ◽  
Claudio Lazzari ◽  
Chloé Lahondère

The temperature of the environment is one of the most important abiotic factors affecting the life of insects. As poikilotherms, their body temperature is not constant, and they rely on various strategies to minimize the risk of thermal stress. They have been thus able to colonize a large spectrum of habitats. Mosquitoes, such as Ae. aegypti and Ae. albopictus, vector many pathogens, including dengue, chikungunya, and Zika viruses. The spread of these diseases has become a major global health concern, and it is predicted that climate change will affect the mosquitoes’ distribution, which will allow these insects to bring new pathogens to naïve populations. We synthesize here the current knowledge on the impact of temperature on the mosquito flight activity and host-seeking behavior (1); ecology and dispersion (2); as well as its potential effect on the pathogens themselves and how climate can affect the transmission of some of these pathogens (3).


Sign in / Sign up

Export Citation Format

Share Document