Molecular characterization of chicken Janus kinase2 (JAK2) and its expression analysis in different tissues and cell lines

Author(s):  
Abdalla A. Sayed

Janus kinase2 (JAK2) is one of an important family that function primarily in signal transduction through contact with signal transducer and activator of transcription (STAT) proteins which reflects the high important role of JAK2 and its family. Chicken JAK2 protein is found to be formed of 1129 amino acids. The phosphorylation tyrosine residues were conserved between chicken, human and mouse. Expression analysis of chicken JAK2 showed a wide range of expression in all used tissues and cell lines. The expression was high in T-cell fraction when compared with that of B-cell one. The expression of chicken JAK2 showed a time course dependent of lipopolysaccharide (LPS) stimulation in spleen and bursa tissues and in IN24 cell line. The stimulation by LPS showed a high expression of chicken JAK2 in spleen and bursa by in-stiu hybridization studies.

2004 ◽  
Vol 22 (2) ◽  
pp. 361-371 ◽  
Author(s):  
David W. Sternberg ◽  
D. Gary Gilliland

Human leukemias are frequently associated with the aberrant expression of activated fusion tyrosine kinases or activated protein tyrosine kinases carrying insertional or point mutations. The activated kinase enzymes typically phosphorylate one or more signal transducer and activator of transcription (STAT) factors, which translocate to the cell nucleus and regulate the expression of genes associated with survival and proliferation. The phosphorylation and activation of STAT family members has been described in a wide range of human leukemias. Furthermore, animal models of leukemia have demonstrated the pivotal contribution of STAT activation to leukemic pathogenesis. This review discusses evidence for the functional importance of STAT activation in the biology of leukemia and current opportunities for modulating STAT proteins in the therapy of this group of diseases.


2020 ◽  
Vol 21 (8) ◽  
pp. 2934 ◽  
Author(s):  
Magdalena Surman ◽  
Sylwia Kędracka-Krok ◽  
Dorota Hoja-Łukowicz ◽  
Urszula Jankowska ◽  
Anna Drożdż ◽  
...  

Cutaneous melanoma (CM) is an aggressive type of skin cancer for which effective biomarkers are still needed. Recently, the protein content of extracellular vesicles (ectosomes and exosomes) became increasingly investigated in terms of its functional role in CM and as a source of novel biomarkers; however, the data concerning the proteome of CM-derived ectosomes is very limited. We used the shotgun nanoLC–MS/MS approach to the profile protein content of ectosomes from primary (WM115, WM793) and metastatic (WM266-4, WM1205Lu) CM cell lines. Additionally, the effect exerted by CM ectosomes on recipient cells was assessed in terms of cell proliferation (Alamar Blue assay) and migratory properties (wound healing assay). All cell lines secreted heterogeneous populations of ectosomes enriched in the common set of proteins. A total of 1507 unique proteins were identified, with many of them involved in cancer cell proliferation, migration, escape from apoptosis, epithelial–mesenchymal transition and angiogenesis. Isolated ectosomes increased proliferation and motility of recipient cells, likely due to the ectosomal transfer of different cancer-promoting molecules. Taken together, these results confirm the significant role of ectosomes in several biological processes leading to CM development and progression, and might be used as a starting point for further studies exploring their diagnostic and prognostic potential.


2016 ◽  
Vol 9 (1) ◽  
pp. e2017007 ◽  
Author(s):  
Umberto Basile

Cryoglobulins are immunoglobulins that precipitate in serum at temperatures below 37°C and resolubilize upon warming. The clinical syndrome of cryoglobulinemia usually includes purpura, weakness, and arthralgia, but the underlying disease may also contribute other symptoms. Blood samples for cryoglobulin are collected, transported, clotted and spun at 37°C, before the precipitate is allowed to form when serum is stored at 4°C in a Wintrobe tube for at least seven days. The most critical and confounding factor affecting the cryoglobulin test is when the preanalytical phase is not fully completed at 37°C. The easiest way to quantify cryoglobulins is the cryocrit estimate. However, this approach has low accuracy and sensitivity. Furthermore, the precipitate should be resolubilized by warming to confirm that it is truly formed of cryoglobulins. The characterization of cryoglobulins requires the precipitate is several times washed, before performing immunofixation, a technique by which cryoglobulins can be classified depending on the characteristics of the detected immunoglobulins. These features imply a pathogenic role of these molecules which are consequently associated with a wide range of symptoms and manifestations. According to the Brouet classification, Cryoglobulins are grouped into three types by the immunochemical properties of immunoglobulins in the cryoprecipitate. The aim of this paper is to review the major aspects of cryoglobulinemia and the laboratory techniques used to detect and characterize cryoglobulins, taking into consideration the presence and consequences of cryoglobulinemia in Hepatitis C Virus (HCV) infection.


2015 ◽  
Vol 235 (3) ◽  
pp. 189-198 ◽  
Author(s):  
Abigail M. Dalzell ◽  
Pratibha Mistry ◽  
Jayne Wright ◽  
Faith. M. Williams ◽  
Colin. D.A. Brown

2018 ◽  
Vol 9 (10) ◽  
pp. 5198-5208 ◽  
Author(s):  
Hanjie Yu ◽  
Yaogang Zhong ◽  
Zhiwei Zhang ◽  
Xiawei Liu ◽  
Kun Zhang ◽  
...  

The bovine milk proteins have a wide range of functions, but the role of the attached glycans in their biological functions has not been fully understood yet.


2018 ◽  
Vol 19 (7) ◽  
pp. 2108 ◽  
Author(s):  
Elisabetta Rubini ◽  
Fabio Altieri ◽  
Silvia Chichiarelli ◽  
Flavia Giamogante ◽  
Stefania Carissimi ◽  
...  

Background: Organochlorine pesticides (OCPs) are widely distributed in the environment and their toxicity is mostly associated with the molecular mechanisms of endocrine disruption. Among OCPs, particular attention was focused on the effects of β-hexaclorocyclohexane (β-HCH), a widely common pollutant. A detailed epidemiological study carried out on exposed population in the “Valle del Sacco” found correlations between the incidence of a wide range of diseases and the occurrence of β-HCH contamination. Taking into account the pleiotropic role of the protein signal transducer and activator of transcription 3 (STAT3), its function as a hub protein in cellular signaling pathways triggered by β-HCH was investigated in different cell lines corresponding to tissues that are especially vulnerable to damage by environmental pollutants. Materials and Methods: Human prostate cancer (LNCaP), human breast cancer (MCF-7 and MDA-MB 468), and human hepatoma (HepG2) cell lines were treated with 10 μM β-HCH in the presence or absence of specific inhibitors for different receptors. All samples were subjected to analysis by immunoblotting and RT-qPCR. Results and Conclusions: The preliminary results allow us to hypothesize the involvement of STAT3, through both its canonical and non-canonical pathways, in response to β-HCH. Moreover, we ascertained the role of STAT3 as a master regulator of energy metabolism via the altered expression and localization of HIF-1α and PKM2, respectively, resulting in a Warburg-like effect.


2015 ◽  
Vol 10 (03) ◽  
pp. 135-156 ◽  
Author(s):  
Valeriya M. Trusova

Amyloid fibrils represent a generic class of mechanically strong and stable biomaterials with extremely advantageous properties. Although amyloids were initially associated only with severe neurological disorders, the role of these structures nowadays is shifting from health debilitating to highly beneficial both in biomedical and technological aspects. Intensive involvement of fibrillar assemblies into the wide range of pathogenic and functional processes strongly necessitate the molecular level characterization of the structural, physical and elastic features of protein nanofibrils. In the present contribution, we made an attempt to highlight the up-to-date progress in the understanding of amyloid properties from the polymer physics standpoint. The fundamental insights into protein fibril behavior are essential not only for development of therapeutic strategies to combat the protein misfolding disorders but also for rational and precise design of novel biodegradable protein-based nanopolymers.


2007 ◽  
Vol 98 (4) ◽  
pp. 2414-2428 ◽  
Author(s):  
Violeta Medan ◽  
Damián Oliva ◽  
Daniel Tomsic

In the grapsid crab Chasmagnathus, a visual danger stimulus elicits a strong escape response that diminishes rapidly on stimulus repetition. This behavioral modification can persist for several days as a result of the formation of an associative memory. We have previously shown that a generic group of large motion-sensitive neurons from the lobula of the crab respond to visual stimuli and accurately reflect the escape performance. Additional evidence indicates that these neurons play a key role in visual memory and in the decision to initiate an escape. Although early studies recognized that the group of lobula giant (LG) neurons consisted of different classes of motion-sensitive cells, a distinction between these classes has been lacking. Here, we recorded in vivo the responses of individual LG neurons to a wide range of visual stimuli presented in different segments of the animal's visual field. Physiological characterizations were followed by intracellular dye injections, which permitted comparison of the functional and morphological features of each cell. All LG neurons consisted of large tangential arborizations in the lobula with axons projecting toward the midbrain. Functionally, these cells proved to be more sensitive to single objects than to flow field motion. Despite these commonalities, clear differences in morphology and physiology allowed us to identify four distinct classes of LG neurons. These results will permit analysis of the role of each neuronal type for visually guided behaviors and will allow us to address specific questions on the neuronal plasticity of LGs that underlie the well-recognized memory model of the crab.


2009 ◽  
Vol 27 (26) ◽  
pp. 4422-4432 ◽  
Author(s):  
Mustafa Benekli ◽  
Heinz Baumann ◽  
Meir Wetzler

Signal transducer and activator of transcription (STAT) proteins comprise a seven-member family of latent cytoplasmic transcription factors that are activated through tyrosine phosphorylation by a variety of cytokines and growth factors. Aberrant activation of STATs accompanies malignant cellular transformation with resultant leukemogenesis. Constitutive activation of STATs has been demonstrated in various leukemias. A better understanding of the mechanisms of dysregulation of the STAT pathway and understanding of the cause and effect relationship in leukemogenesis may serve as a basis for designing novel therapeutic strategies directed against STATs. Mechanisms of STAT activation, the potential role of STAT signaling in leukemogenesis, and recent advances in drug discovery targeting the STAT pathway are the focus of this review.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 989-989 ◽  
Author(s):  
Abdullah M. Ali ◽  
Thiyam R. Singh ◽  
Ruhikanta A. Meetei

Abstract Fanconi Anemia (FA) is an autosomal recessive and X-linked disorder characterized by congenital abnormalities, progressive bone marrow failure, and a high incidence of hematological (acute leukemia) and non-hematological malignancies (squamous cell carcinomas of the head and neck or gynecologic system). FA is genetically heterogeneous disease and to date 12 complementation groups are known of which 11 gene products have been identified (FANC- A, B, C, D1, D2, E, F, G, J, L, M). Eight of the FA gene products, FANCA, FANCB, FANC, FANCE, FANCF, FANCG, FANCL and FANCM form a multiprotein FA core complex. This complex is required for the monoubiquitination of FANCD2 upon DNA damage by various genotoxic agents. The other two FA proteins; FANCD1/BRCA2 and FANCJ are believed to act “downstream” of FANCD2. In order to understand the role of FA proteins in DNA repair pathway it is necessary to find all the FA genes and their interacting partners. We have established a two-step purification method using 6XHis and FLAG tags for the biochemical and functional characterization of the FA core complex proteins. In an attempt to isolate interacting partners of FANCM and FANCL proteins; we have established two different HeLa cell lines; HeLa-HF-FANCM and HeLa-HF-FANCL, stably expressing HF-FANCM and HF-FANCL recombinant proteins respectively. Two step affinity purification was carried out to isolate the complexes from the extracts prepared from stable cell lines. Two polypeptides, namely, FAAP16 and FAAP100 were identified by mass-spectrometry as major interacting partners of FANCM and FANCL respectively. The interaction of FAAP16 and FAAP100 with other FA core complex proteins was confirmed by reciprocal affinity purification coupled mass-spectrometry using HeLa cells stably expressing HF-FAAP16 and HF-FAAP100 proteins. Furthermore, suppression of FAAP16 and FAAP100 in HeLa cells using siRNA resulted in a reduced MMC-induced FANCD2 monoubiquitination. Studies are being carried out to understand the precise role of these proteins in the FA core complex. These data suggest additional proteins interact with FA core complex members and demonstrate the utility of the purification method in delineating interacting proteins involved in FA.


Sign in / Sign up

Export Citation Format

Share Document