scholarly journals Mass Spectrometry-Based Proteomic Characterization of Cutaneous Melanoma Ectosomes Reveals the Presence of Cancer-Related Molecules

2020 ◽  
Vol 21 (8) ◽  
pp. 2934 ◽  
Author(s):  
Magdalena Surman ◽  
Sylwia Kędracka-Krok ◽  
Dorota Hoja-Łukowicz ◽  
Urszula Jankowska ◽  
Anna Drożdż ◽  
...  

Cutaneous melanoma (CM) is an aggressive type of skin cancer for which effective biomarkers are still needed. Recently, the protein content of extracellular vesicles (ectosomes and exosomes) became increasingly investigated in terms of its functional role in CM and as a source of novel biomarkers; however, the data concerning the proteome of CM-derived ectosomes is very limited. We used the shotgun nanoLC–MS/MS approach to the profile protein content of ectosomes from primary (WM115, WM793) and metastatic (WM266-4, WM1205Lu) CM cell lines. Additionally, the effect exerted by CM ectosomes on recipient cells was assessed in terms of cell proliferation (Alamar Blue assay) and migratory properties (wound healing assay). All cell lines secreted heterogeneous populations of ectosomes enriched in the common set of proteins. A total of 1507 unique proteins were identified, with many of them involved in cancer cell proliferation, migration, escape from apoptosis, epithelial–mesenchymal transition and angiogenesis. Isolated ectosomes increased proliferation and motility of recipient cells, likely due to the ectosomal transfer of different cancer-promoting molecules. Taken together, these results confirm the significant role of ectosomes in several biological processes leading to CM development and progression, and might be used as a starting point for further studies exploring their diagnostic and prognostic potential.

2018 ◽  
Vol 96 (3) ◽  
pp. 326-331 ◽  
Author(s):  
Ping He ◽  
Xiaojie Jin

Objective: The aim of this study was to investigate the role of SOX10 in nasopharyngeal carcinoma (NPC) and the underlying molecular mechanisms. Methods: The expression of SOX10 was initially assessed in human NPC tissues and a series of NPC cell lines through quantitative real-time PCR (qRT-PCR) and Western blot. Then, cell proliferation, cycle, migration, and the invasiveness of NPC cells with knockdown of SOX10 were examined by MTT, flow cytometry, and Transwell migration and invasion assays, respectively. Finally, nude mice tumorigenicity experiments were performed to evaluate the effects of SOX10 on NPC growth and metastasis in vivo. Results: SOX10 was significantly increased in NPC tissues and cell lines. In-vitro experiments revealed that loss of SOX10 obviously inhibited cell proliferation, migration, and invasiveness, as well as the epithelial–mesenchymal transition (EMT) process in NPC cells. In-vivo experiments further demonstrated that disrupted SOX10 expression restrained NPC growth and metastasis, especially in lung and liver. Conclusion: Taken together, our data confirmed the role of SOX10 as an oncogene in NPC progression, and revealed that SOX10 may serve as a novel biomarker for diagnosis of NPC, as well as a potential therapeutic target against this disease.


Breast Cancer ◽  
2021 ◽  
Author(s):  
Yingzi Zhang ◽  
Jiao Tian ◽  
Chi Qu ◽  
Yang Peng ◽  
Jinwei Lei ◽  
...  

Abstract Background Recent studies have indicated that serpin peptidase inhibitor, clade A, member 3 (SERPINA3) is a potential marker associated with tumor progression, which connoted that SERPINA3 is related to malignant phenotypes in cancer. However, the biological function of SERPINA3 in breast cancer (BC) remains unclear. Methods Bioinformatics data were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Immunohistochemical staining (IHC) was conducted to determine SERPINA3 expression. With strong aggressive abilities, triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, BT549 and MDA-MB-436) were obtained to examine SERPINA3 expression and functions. Wound healing and Transwell assays were performed to measure cell migration and invasion. Cell Counting Kit-8 (CCK-8) assay was conducted to detect cell proliferation abilities and cell viabilities. Results SERPINA3 was upregulated in BC tissues. Functional assays suggested that overexpression of SERPINA3 significantly promoted cell proliferation, where migration and invasion of TNBC cells were accelerated. Knockdown of SERPINA3 had the opposite effects. These results causing by overexpression of SERPINA3 were also confirmed in non-TNBC cell lines. Overexpression of SERPINA3 remarkably enhanced the epithelial–mesenchymal transition (EMT) by upregulating the EMT markers and EZH2. In addition, the overexpression of SERPINA3 reduced the sensitivity of TNBC cells to cisplatin. Conclusion SERPINA3 can regulate the migration, invasion and EMT of TNBC cells and increased expression of SERPINA3 confers resistance to cisplatin in TNBC cells. We discern it is required for the regulation of BC progression and is a critical target for the clinical treatment of BC.


2019 ◽  
Vol 47 (3) ◽  
pp. 1319-1329 ◽  
Author(s):  
Jian Zhang ◽  
Hai Ma ◽  
Liu Yang ◽  
Hongchun Yang ◽  
Zhenxing He

Objectives Overexpression of human trophoblast cell surface antigen 2 (Trop2) has been observed in many cancers; however, its roles in proliferation, apoptosis, migration, and invasion of hepatocellular carcinoma (HCC) remain unclear. Thus, this study aimed to characterize the function of Trop2 in HCC. Methods Trop2 protein expression was detected by immunohistochemistry in HCC tissues. Cell proliferation, apoptosis, and invasion were respectively measured by CCK-8, flow cytometry, Transwell, and wound healing assays. Expression levels of epithelial–mesenchymal transition-related proteins and Trop2 protein in HCC cell lines were detected by western blotting after silencing of the TROP2 gene. Results Trop2 protein was highly expressed in HCC tissues and HCC cell lines. Trop2 mRNA and protein expression levels decreased in HepG2 and HCCLM3 cells after transfection with Trop2 siRNA. Silencing of the TROP2 gene in HepG2 and HCCLM3 cells strongly inhibited cell proliferation and migration, while enhancing cell apoptosis. Investigation of the molecular mechanism revealed that silencing of the TROP2 gene suppressed epithelial–mesenchymal transition of HepG2 and HCCLM3 cells. Conclusions The results of the present study may improve understanding of the role of Trop2 in regulation of cell proliferation and invasion, and may aid in development of novel therapy for HCC.


2021 ◽  
Vol 22 (5) ◽  
Author(s):  
Mennatallah Ghouraba ◽  
Razan Masad ◽  
Eric Mpingirika ◽  
Omnia Abdelraheem ◽  
Rached Zeghlache ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1234
Author(s):  
Mauricio Reyna-Jeldes ◽  
Erwin De la Fuente-Ortega ◽  
Daniela Cerda ◽  
Erandi Velázquez-Miranda ◽  
Katherine Pinto ◽  
...  

Gastric cancer (GC) is a major health concern worldwide, presenting a complex pathophysiology that has hindered many therapeutic efforts so far. In this context, purinergic signaling emerges as a promising pathway for intervention due to its known role in cancer cell proliferation and migration. In this work, we explored in more detail the role of purinergic signaling in GC with several experimental approaches. First, we measured extracellular ATP concentrations on GC-derived cell lines (AGS, MKN-45, and MKN-74), finding higher levels of extracellular ATP than those obtained for the non-tumoral gastric cell line GES-1. Next, we established the P2Y2 and P2X4 receptors (P2Y2R and P2X4R) expression profile on these cells and evaluated their role on cell proliferation and migration after applying overexpression and knockdown strategies. In general, a P2Y2R overexpression and P2X4R downregulation pattern were observed on GC cell lines, and when these patterns were modified, concomitant changes in cell viability were observed. These modifications on gene expression also modified transepithelial electrical resistance (TEER), showing that higher P2Y2R levels decreased TEER, and high P2X4R expression had the opposite effect, suggesting that P2Y2R and P2X4R activation could promote and suppress epithelial-mesenchymal transition (EMT), respectively. These effects were confirmed after treating AGS cells with UTP, a P2Y2R-agonist that modified the expression patterns towards mesenchymal markers. To further characterize the effects of P2Y2R activation on EMT, we used cDNA microarrays and observed that UTP induced important transcriptional changes on several cell processes like cell proliferation induction, apoptosis inhibition, cell differentiation induction, and cell adhesion reduction. These results suggest that purinergic signaling plays a complex role in GC pathophysiology, and changes in purinergic balance can trigger tumorigenesis in non-tumoral gastric cells.


2011 ◽  
Vol 29 (4_suppl) ◽  
pp. 414-414
Author(s):  
C. Grandclement ◽  
R. Bedel ◽  
B. Kantelip ◽  
E. Viel ◽  
J. Remy Martin ◽  
...  

414 Background: Initially characterized as neuronal receptors, Neuropilins (NRPs) were also found to be expressed in endothelial cells and subsequently were shown to play a role in the development of the vascular system. NRP family consists of two genes, neuropilin-1 (NRP1) and neuropilin-2 (NRP2).The multiple functions of NRPs were recently highlighted by the identification of NRP role in oncogenesis. In this study, we first confirmed the role of NRP2 in tumor progression. We also extended the understanding of NRP2 oncogenic functions by investigating the ability of NRP2 to orchestrate epithelial-mesenchymal transition (EMT) in colorectal cancer cells. Methods: We have generated human colon cancer cell lines transfected with NRP2 transgene or siRNA to investigate NRP2 involvement in EMT. First, the oncogenic functions of NRP2 were studied in vitro by MTT, soft agar, invasion assays and in vivo using xenografts experiments. Ability of NRP2 to orchestrate EMT was then investigated by flow cytometry, immunohistochemical (IHC) staining, western-blotting and quantitative real-time PCR. Results: IHC staining revealed that NRP2 is expressed in human colon and breast carcinomas while it is not expressed in healthy tissues. Then, we confirmed that NRP2 increases tumor proliferation, colony formation, invasion and xenograft formation. Moreover, NRP2-expressing cells displayed an immunohistochemical phenotype of EMT characterized by the loss of E-Cadherin and an increase of vimentin. Furthermore, NRP2 expression promotes transforming-growth factor-β1 (TGF- β1) signaling, leading to an increased phosphorylation of the Smad2/3 complex in colorectal cancer cell lines. Specific inhibition of NRP2 using siRNA or treatment with specific TGFβRI kinase inhibitors prevented this phosphorylation and the EMT, suggesting that NRP2 cooperates with TGFRI to promote EMT in colorectal carcinoma. Conclusions: Our findings have reinforced the essential role of NRP2 in cancer progression and demonstrated that NRP2 expression confers to tumor cell lines the hallmarks of EMT. Moreover, in the current work, we present evidence for the therapeutic value of NRP2 targeting. No significant financial relationships to disclose.


2017 ◽  
Vol 37 (2) ◽  
Author(s):  
Dawei Wang ◽  
Guoliang Lu ◽  
Yuan Shao ◽  
Da Xu

miRNAs are a class of non-coding RNAs that exert critical roles in various biological processes. The aim of the present study was to identify the functional roles of miR-802 in regulating epithelial–mesenchymal transition (EMT) in prostate cancer (PCa). miR-802 expression was detected in 73 pairs of PCa samples and PCa cell lines (PC3 and DU145 cells) by qRT-PCR. Cell proliferation was detected using MTT assay, and cell apoptosis was evaluated using flow cytometry. Transwell assay was conducted to investigate cell migration and invasion. Expression analysis of a set of EMT markers was performed to explore whether miR-802 is involved in EMT program. Xenograft model was established to investigate the function of miR-802 in carcinogenesis in vivo. The direct regulation of Flotillin-2 (Flot2) by miR-802 was identified using luciferase reporter assay. miR-802 was remarkably down-regulated in PCa tissues and cell lines. Gain-of-function trails showed that miR-802 serves as an ‘oncosuppressor’ in PCa through inhibiting cell proliferation and promoting cell apoptosis in vitro. Overexpression of miR-802 significantly suppressed in vivo PCa tumor growth. Luciferase reporter analysis identified Flot2 as a direct target of miR-802 in PCa cells. Overexpressed miR-802 significantly suppressed EMT, migration and invasion in PCa cells by regulating Flot2. We identified miR-802 as a novel tumor suppressor in PCa progression and elucidated a novel mechanism of the miR-802/Flot2 axis in the regulation of EMT, which may be a potential therapeutic target.


2017 ◽  
Vol 42 (6) ◽  
pp. 2145-2158 ◽  
Author(s):  
Liang Zhao ◽  
Hongwei Sun ◽  
Hongru Kong ◽  
Zongjing Chen ◽  
Bicheng Chen ◽  
...  

Background/Aims: Pancreatic carcinoma (PC) is the one of the most common and malignant cancers worldwide. LncRNA taurine upregulated gene 1 (TUG1) was initially identified as a transcript upregulated by taurine, and the abnormal expression of TUG1 has been reported in many cancers. However, the biological role and molecular mechanism of TUG1 in PC still needs further investigation. Methods: Quantitative real-time PCR (qRT-PCR) was performed to measure the expression of TUG1 in PC cell lines and tissues. MTT and colony formation assays were used to measure the effect of TUG1 on cell proliferation. A wound healing assay, transwell assay and western blot assay were employed to determine the effect of TUG1 on cell migration and the epithelial mesenchymal transition (EMT) phenotype. RNA-binding protein immunoprecipitation (RIP) and a biotin-avidin pulldown system were performed to confirm the interaction between miR-328 and TUG1. A gene expression array analysis using clinical samples and RT-qPCR suggested that enhancer of zeste homolog 2 (EZH2) was a target of miR-382 in PC. Results: In this study, we reported that TUG1 was overexpressed in PC tissues and cell lines, and high expression of TUG1 predicted poor prognosis. Further experiments revealed that overexpressed TUG1 promoted cell proliferation, migration and contributed to EMT formation, whereas silenced TUG1 led to opposing results. Additionally, luciferase reporter assays, an RIP assay and an RNA-pulldown assay demonstrated that TUG1 could competitively sponge miR-382 and thereby regulate EZH2. Conclusion: Collectively, these findings revealed that TUG1 functions as an oncogenic lncRNA that promotes tumor progression, at least partially, by functioning as an endogenous ‘sponge’ and competing for miR-382 binding to the miRNA target EZH2.


Sign in / Sign up

Export Citation Format

Share Document