Evaluation of green gram genotypes for drought tolerance by PEG (polyethylene glycol) induced drought stress at seedling stage

Author(s):  
M. Jincya ◽  
V. Babu Rajendra Prasad ◽  
P. Jeyakumara ◽  
A. Senthila ◽  
N. Manivannan

Drought stress is one of the major constraints for pulse production which negatively affecting its growth and production. Screening and selection of desirable genotypes for drought tolerance is the first and foremost important step in pulse breeding program. In green gram standardization for moisture stress was done under laboratory conditions using various concentration of PEG 6000 and 50% seedling mortality was observed at 0.5 MPa of moisture stress. Using this level of moisture stress 108 green gram genotypes were screened for their drought tolerance at seedling level and the following parameters viz., germination percentage, promptness index, radicle length, root length stress index, germination stress index and seed vigour were recorded. Observations revealed that the following green gram genotypes COGG 1332, VGG 16069, VGG 17003, VGG 17004, VGG 17009, VGG 17019 and VGG 17045 were found highly tolerant to moisture stress at seedling stage.

2021 ◽  
Vol 11 ◽  
Author(s):  
Mahmoud Gad ◽  
Hongbo Chao ◽  
Huaixin Li ◽  
Weiguo Zhao ◽  
Guangyuan Lu ◽  
...  

Drought stress is one of the most environmental abiotic stresses affecting seed germination and crop growth. In the present study, the genetic characteristics of seed germination under drought stress in a Brassica napus double haploid population were analyzed. Five germination-related indexes, including germination percentage (GP), root length (RL), shoot length (SL), fresh weight (FW), and root-to-shoot length ratio (R/S) under control and drought stress, were calculated, and the drought stress index (DSI), including DSI-GP, DSI-RL, DSI-SL, DSI-FW, and DSI-R/S, was determined using the quantitative trait loci (QTLs) analysis based on high-density genetic linkage map. The phenotypic analysis indicated that the R/S is an effective morphological trait in the determination of drought tolerance in the seedling stage. Thirty-nine identified QTLs were observed for these traits and then integrated into 36 consensus QTLs, in which 18 QTLs were found to affect the DSI of four traits (GP, RL, SL, and R/S). Based on the co-linearity between genetic and physical maps of B. napus, 256 candidate genes were detected, and 128 genes have single-nucleotidepolymorphisms/insertion–deletion (SNP/InDel) variations between two parents, some of which were associated with the drought stress tolerance (for example, BnaC03g32780D, BnaC03g37030D, and BnaC09g27300D). The present results laid insights into drought tolerance and its genetic bases in B. napus.


2021 ◽  
Vol 13 (1) ◽  
pp. 147
Author(s):  
Tom De Swaef ◽  
Wouter H. Maes ◽  
Jonas Aper ◽  
Joost Baert ◽  
Mathias Cougnon ◽  
...  

The persistence and productivity of forage grasses, important sources for feed production, are threatened by climate change-induced drought. Breeding programs are in search of new drought tolerant forage grass varieties, but those programs still rely on time-consuming and less consistent visual scoring by breeders. In this study, we evaluate whether Unmanned Aerial Vehicle (UAV) based remote sensing can complement or replace this visual breeder score. A field experiment was set up to test the drought tolerance of genotypes from three common forage types of two different species: Festuca arundinacea, diploid Lolium perenne and tetraploid Lolium perenne. Drought stress was imposed by using mobile rainout shelters. UAV flights with RGB and thermal sensors were conducted at five time points during the experiment. Visual-based indices from different colour spaces were selected that were closely correlated to the breeder score. Furthermore, several indices, in particular H and NDLab, from the HSV (Hue Saturation Value) and CIELab (Commission Internationale de l’éclairage) colour space, respectively, displayed a broad-sense heritability that was as high or higher than the visual breeder score, making these indices highly suited for high-throughput field phenotyping applications that can complement or even replace the breeder score. The thermal-based Crop Water Stress Index CWSI provided complementary information to visual-based indices, enabling the analysis of differences in ecophysiological mechanisms for coping with reduced water availability between species and ploidy levels. All species/types displayed variation in drought stress tolerance, which confirms that there is sufficient variation for selection within these groups of grasses. Our results confirmed the better drought tolerance potential of Festuca arundinacea, but also showed which Lolium perenne genotypes are more tolerant.


Author(s):  
K.D. Nkoana ◽  
Abe Shegro Gerrano ◽  
E.T. Gwata

The genetic potential for drought tolerance in cowpea within the small holder sector has not been fully exploited in South Africa. Thus, a drought evaluation experiment was conducted at the ARC-VOP to evaluate 28 cowpea germplasm accessions including two controls viz. IT96D-602 (drought tolerant) and TVU7778 (susceptible to drought) in the drought screening house using plastic box evaluation method in January, 2017. Genotypes raised for three weeks were subjected to 5 weeks of water stress treatment to determine their physiological response through leaf wilting index, relative water content and proline content followed by re-watering to determine genotype (s) with ability to recover from drought stress. Analyses of variance showed highly significant differences in response to moisture stress among the cowpea accessions for the selected physiological traits except for leaf wilting index at week two of drought stress. Stem greenness and recovery appeared to be a reliable indicator of drought tolerant genotypes which was readily observed in Acc1257, Acc1168, Acc2355, IT96D-602 and Acc5352 which also correlated significantly and positively with relative water content and proline content. The genotypes responded differently to drought stress indicating that there is sufficient genetic variability that can be utilized further in breeding for drought stress within the cowpea species.


2012 ◽  
Vol 45 (3) ◽  
pp. 25-39 ◽  
Author(s):  
S. Mohammadi ◽  
M. Janmohammadi ◽  
A. Javanmard ◽  
N. Sabaghnia ◽  
M. Rezaie ◽  
...  

Abstract The capability of a genotype to achieve acceptable yield over a broad range of sub-optimum and suitable conditions is extremely imperative. Late planting and end-season drought stress are two main factors limiting wheat yield in northwest of Iran. In a 2-year field experiment at Miandoab, Iran, the ability of several selection indices to identify drought resistant genotypes under different sowing dates and moisture conditions were evaluated. Six genotypes of differing response to water scarcity were planted at 20-d intervals on three dates from 11 October to 20 November. Drought resistance indices were utilized on the basis of grain yield under end-season drought (Ys) and normal (YN) conditions. Evaluation of MP, HARM, GM, STI, TOL, SSI, RDI, YSI and Yr indicated that late sowing (20 Nov) significantly decreased drought tolerance in all investigated genotypes. However, yield comparisons under normal and terminal drought stress conditions revealed that promising lines (C-81-4, C-81- 10, C-81-14 and C-82-12) had better performance than local checks (Zarrin and Alvand). Furthermore under both moisture conditions C-81-10 genotype had the greatest grain yield. Based on drought indices like as MP, GMP, STI and HARM C-81-10 genotype introduced as the most tolerant genotype to end-season drought stress. Grain yield showed a positive and significant correlation with HARM, GMP, MP, STI and YI indices were more efficient for recognizing high performance genotypes under different sowing dates and diverse moisture stress.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Achirou Bacharou Falke ◽  
Falalou Hamidou ◽  
Oumarou Halilou ◽  
Abdou Harou

Investigation of groundnut genotypes response to drought stress could contribute to improving drought tolerance and productivity. The objective of this study was to investigate new improved groundnut varieties response to drought stress under controlled conditions to identify tolerant materials and drought tolerance related traits. Thus, three experiments were conducted during off-seasons: two experiments in lysimetric system in 2017 and 2018 and one experiment in pots in 2017, to assess twelve varieties in a randomized complete block design with 2 water regimes and 4 replications. The water regimes were a full irrigation (WW) and an intermittent drought imposed at flowering times (WS). The investigated morphophysiological traits like transpiration, specific leaf area, root dry matter, root length density, and yield components decreased under WS. Significant year effect and genotypic variation were observed on most of investigated traits. Genotypes ICGV 92206 and ICGV 06319 showed low transpiration and revealed high pod yielding and early maturing genotypes under both water regimes, while genotypes ICGV 92035, ICGV 92195, ICGV 02038, ICGV 07211, and ICGV 07210 were drought-sensitive for pods production but produced high haulm under both water regimes. ICGV 92206, ICGV 02005, ICGV 02125, and ICGV 06319 showed higher yielding than 55-437 and Fleur 11. In this study, low total transpiration to control water loss, chlorophyll content, and root length density revealed drought tolerance associated traits for pod production, while TTW, TE, RDW, and RV revealed drought tolerance associated traits for fodder production.


2017 ◽  
Vol 68 (2) ◽  
pp. 188 ◽  
Author(s):  
Jixiang Lin ◽  
Yujie Shi ◽  
Shuang Tao ◽  
Xingyang Yu ◽  
Dafu Yu ◽  
...  

Leymus chinensis has important forage value and is considered a useful grass species for grassland restoration in Northeast China. However, little information exists concerning the germination responses of this species to interactions of cold stratification, light, temperature and low water potential caused by salinity and drought. Experiments were conducted in growth chambers, and the results showed that in all conditions of light, temperature and water stresses, the germination percentages of cold-stratified seeds were higher than of non-stratified seeds. Light had an inhibitory effect on germination percentage under both non-saline and salt stress conditions; darkness is beneficial for germination of this species. In addition, seeds germinated much better under alternating temperature regimes than under constant temperatures. Both salt and drought stresses decreased the germination percentage of Leymus chinensis, but the reductions under drought stress were much greater. Moreover, after being transferred to distilled water, most non-germinated seeds under drought stress germinated well, and the total percentage reached that of the non-saline condition level. Therefore, cold stratification is an effective measure to increase seed germination and salt or drought tolerance, especially in darkness. We conclude that Leymus chinensis has definite salt and drought tolerance during the germination stage and it is a promising species for the restoration of deteriorated grassland in Northeast China.


2016 ◽  
Vol 36 (1) ◽  
Author(s):  
丁国华 DING Guohua ◽  
马殿荣 MA Dianrong ◽  
杨光 YANG Guang ◽  
张凤鸣 ZHANG Fengming ◽  
白良明 BAI Liangming ◽  
...  

2020 ◽  
Vol 21 (23) ◽  
pp. 9174
Author(s):  
Hongbing Li ◽  
Yulin Li ◽  
Qingbo Ke ◽  
Sang-Soo Kwak ◽  
Suiqi Zhang ◽  
...  

Drought is one of the most important constraints on the growth and productivity of many crops, including sorghum. However, as a primary sensing organ, the plant root response to drought has not been well documented at the proteomic level. In the present study, we compared physiological alteration and differential accumulation of proteins in the roots of sorghum (Sorghum bicolor) inbred line BT×623 response to Polyethylene Glycol (PEG)-induced drought stress at the seedling stage. Drought stress (up to 24 h after PEG treatment) resulted in increased accumulation of reactive oxygen species (ROS) and subsequent lipid peroxidation. The proline content was increased in drought-stressed plants. The physiological mechanism of sorghum root response to drought was attributed to the elimination of harmful free radicals and to the alleviation of oxidative stress via the synergistic action of antioxidant enzymes, such as superoxide dismutase, peroxidase, and polyphenol oxidase. The high-resolution proteome map demonstrated significant variations in about 65 protein spots detected on Coomassie Brilliant Blue-stained 2-DE gels. Of these, 52 protein spots were identified by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF-TOF MS) representing 49 unique proteins; the levels of 43 protein spots were increased, and 22 were decreased under drought condition. The proteins identified in this study are involved in a variety of cellular functions, including carbohydrate and energy metabolism, antioxidant and defense response, protein synthesis/processing/degradation, transcriptional regulation, amino acid biosynthesis, and nitrogen metabolism, which contribute jointly to the molecular mechanism of outstanding drought tolerance in sorghum plants. Analysis of protein expression patterns and physiological analysis revealed that proteins associated with changes in energy usage; osmotic adjustment; ROS scavenging; and protein synthesis, processing, and proteolysis play important roles in maintaining root growth under drought stress. This study provides new insight for better understanding of the molecular basis of drought stress responses, aiming to improve plant drought tolerance for enhanced yield.


2016 ◽  
Vol 5 (04) ◽  
pp. 1318
Author(s):  
Vidya P. ◽  
Shintu V. P.* ◽  
Jayaram M. K.

The main focus of the present study is to evaluate the effect of priming of green gram (Vigna radiata) with phosphate solubilising bacteria (PSB) during drought stress. Drought is the major abiotic stress factor which diminishing the growth and development of agricultural in Kerala. So immediate steps need to be taken to overcome the adverse effect of drought stress for the development of agriculture. Phosphate Solubilizing Bacteria are one of the best microorganisms found to be simultaneously increasing the insoluble soil Phosphorus uptake by the plant and crop yield. In the study, the seeds of Vigna radiata were subjected to priming treatment with 0.5 % and 1% phosphate solubilising bacteria. Physiological and biochemical parameters like germination percentage, root and shoot length, relative water content (RWC), amount of chlorophyll, protein, proline and yield were studied.  Inoculation with phosphate solubilising bacteria showed remarkable variation in both physiological and biochemical parameters of green gram plants. Among the two concentrations tested, 1% phosphate solubilising bacteria was found to be effective in mitigating the effect of water stress, stimulating early flowering and also in increasing yield.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 497f-497
Author(s):  
Kristin Schneider ◽  
James D. Kelly

Common beans, considered sensitive to moisture stress, are an important commodity in developing countries such as the Mexican Highlands where intermittent drought conditions are prevalent during the growing season. The selection and development of high performing cultivars under drought stress is confounded by the quantitative nature of drought tolerance. To employ indirect selection in earlier generations, RAPD markers were identified that associated with QTLs controlling performance under drought stress. RAPD markers are preferred for use in Phaseolus vulgaris, over RFLPs, because they generate polymorphisms between genetically related germplasm. 48% of 620 arbitrary primers screened against three parents of two F6 derived recombinant inbred pinto populations were polymorphic for one or more bands. These polymorphisms were screened against RILs in each population and associations were determined using one-way ANOVAs and Mapmaker. Yield data used for determination of associations was collected over five years in MI and Mexico where both stress and non stress treatments were applied.


Sign in / Sign up

Export Citation Format

Share Document