scholarly journals SYNTHESIS AND CHARACTERIZATION OF ALGINATE-CARBOXYMETHIL CELLULOSE BEADS FROM CORN STALK (Zea mays) WITH CROSSLINK VARIATION C4H6O4Zn

2019 ◽  
Vol 4 (1) ◽  
pp. 40
Author(s):  
Annazmil Fayros Latifah ◽  
Eny Yulianti ◽  
Lilik Miftahul Khoiroh

<em>Corn stalk has a high cellulose content, so that it is potential to be used as a composition for making alginate-carboxymethyl cellulose beads. Alginate and cellulose are biodegradable, renewable and non-meltable polymers that have wide applications in various industrial sectors. The purpose of this study was to determine the effect of crosslinking agent C<sub>4</sub>H<sub>6</sub>O<sub>4</sub>Zn on the adsorption and shape of beads. The varied concentrations of C<sub>4</sub>H<sub>6</sub>O<sub>4</sub>Zn are 3%; 5% and 10%. Characterization of alginate-carboxymethyl cellulose beads composites using Fourier Transform InfraRed (FTIR), and Scanning Electron Microscope-Energy Dispersive X-Ray (SEM-EDX).</em> <em>Based on research, the highest swelling value is obtained at 5% C<sub>4</sub>H<sub>6</sub>O<sub>4</sub>Zn crosslink which is 59.68%. FTIR data shows the appearance of wave numbers at 1413 cm<sup>-1</sup> which indicates the presence of C-O Na groups, while at wave number 458 cm<sup>-1</sup> indicates the presence of Zn-O groups. SEM-EDX data with a 5% C<sub>4</sub>H<sub>6</sub>O<sub>4</sub>Zn crosslink has a round shape with a wrinkled surface, multiple grooves causing a non-homogeneous surface. Whereas in C<sub>4</sub>H<sub>6</sub>O<sub>4</sub>Zn 10% the surface is almost smooth</em>

2021 ◽  
Vol 15 (2) ◽  
pp. 194
Author(s):  
RIZKA NURLAILA

Rice straw is a waste from rice plants that contains 37.71% cellulose, 21.99% hemicellulose, and 16.62% lignin. High cellulose content in rice straw can be used as raw material for the manufacture of Carboxymethyl Cellulose (CMC). CMC is a cellulose derivative widely used in food, pharmaceutical, detergent, textile and cosmetic products industries as a thickener, stabilizer of emulsions, or suspensions and bonding. This study aims to process rice straw waste into CMC with variations in sodium monochloroacetate of 5,6,7,8 and 9 grams. The method used in this research is by synthesis using 15% NaOH solvent, with a reaction time of 3.5 hours and 5 grams of rice straw. The results showed that the best CMC was obtained at a concentration of 9 grams of sodium monochloroacete with a yield characterization of 94%, pH 6, water content of 13.39%, degree of substitution (Ds) of 0.80, and viscosity of 1.265 cP.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 7684-7701
Author(s):  
Noppadol Panchan ◽  
Pattra Wattanapan ◽  
Sirada Sungsinchai ◽  
Supacharee Roddecha ◽  
Peerapan Dittanet ◽  
...  

Pineapple leaf waste, with its high cellulose content, can serve as alternative starting material for the production of carboxymethyl cellulose (CMC). In this study, synthesis conditions of CMC from pineapple leaves via the use of microwave heating were optimized. Box-Behnken design and response surface methodology were applied to schedule the experiments and to optimize the synthesis condition, respectively. Preparation of CMC was investigated by varying three factors, namely, sodium hydroxide (NaOH) concentration, monochloroacetic acid (MCA) dose, and etherification time. The process of carboxymethylation was optimized to produce CMC with high degree of substitution (DS). Optimal condition for CMC synthesis was noted to be 50% (w/v) NaOH solution, 8 g of MCA/g cellulose, and etherification time of 16 min; such optimal condition resulted in the maximum DS of 0.78. Synthesized CMC was utilized as a thickener for liquid foods (water, orange juice, milk, and mushroom cream soup) where 2% (w/v) as-synthesized CMC increased the viscosity of the foods and changed their characteristics from thin to nectar-like liquids.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 7684-7701
Author(s):  
Noppadol Panchan ◽  
Pattra Wattanapan ◽  
Sirada Sungsinchai ◽  
Supacharee Roddecha ◽  
Peerapan Dittanet ◽  
...  

Pineapple leaf waste, with its high cellulose content, can serve as alternative starting material for the production of carboxymethyl cellulose (CMC). In this study, synthesis conditions of CMC from pineapple leaves via the use of microwave heating were optimized. Box-Behnken design and response surface methodology were applied to schedule the experiments and to optimize the synthesis condition, respectively. Preparation of CMC was investigated by varying three factors, namely, sodium hydroxide (NaOH) concentration, monochloroacetic acid (MCA) dose, and etherification time. The process of carboxymethylation was optimized to produce CMC with high degree of substitution (DS). Optimal condition for CMC synthesis was noted to be 50% (w/v) NaOH solution, 8 g of MCA/g cellulose, and etherification time of 16 min; such optimal condition resulted in the maximum DS of 0.78. Synthesized CMC was utilized as a thickener for liquid foods (water, orange juice, milk, and mushroom cream soup) where 2% (w/v) as-synthesized CMC increased the viscosity of the foods and changed their characteristics from thin to nectar-like liquids.


2021 ◽  
Vol 57 (4) ◽  
pp. 225-235
Author(s):  
Suripto D. Yuwono ◽  
Endah Wahyuningsih ◽  
Noviany ◽  
Agung A. Kiswandono ◽  
Wasinton Simanjuntak ◽  
...  

In this study, carboxymethyl cellulose (CMC) was synthesized from the cellulose of cassava peel using alkalization and etherification reaction, and it was subsequently characterized with various techniques. Microcellulose was obtained by hydrolyzing a;-cellulose from cassava peel using H2SO4 with concentrations of 45%, 47%, and 49%. The experimental results indicate that the varying concentrations of acid affect the particle size of the cellulose, with 49% H2SO4 solution producing a cellulose with particle size of around 0.45-2.42 �m and relative percentage of 11.3% according to PSA analysis. Other analyses conducted included determination of substitution degrees, DTG/DTA/TGA, FTIR, SEM, and XRD. The value of the substitution degree was determined at 0.27. TGA decomposition thermograms at a temperature of 150oC-320oC of 19.60 % indicate CMC compounds. DTA thermograms show that these CMC compounds have endothermic properties at 140oC and exothermic properties at 260oC. FTIR spectra show the presence of absorption band at wave number 1605 cm-1, which is a characteristic absorption of carbonyl group bound to cellulose. The results of SEM analysis indicate that the CMC has a tenuous surface morphology, and the XRD diffractograms are marked by the presence of weak peak at 2e = 20o, implying the existence of CMC as mostly amorphous.


2017 ◽  
Vol 264 ◽  
pp. 9-12 ◽  
Author(s):  
Pei Gie Gan ◽  
Sung Ting Sam ◽  
Muhammad Faiq bin Abdullah ◽  
Nik Noriman bin Zulkepli ◽  
Yin Fong Yeong

In recent years, there has been a great interest in the production of nanocrystalline cellulose (NCC) due to its excellent properties. In this study, empty fruit bunch (EFB) was used as the material for the production of NCC due to its high cellulose content, inexpensive and readily-available source. NCC was prepared using acid hydrolysis at 62% for 1 hours. The morphology of NCC was determined by Field Emission Scanning Electron Microscopy (FESEM). The size of NCC was less than 50 nm in width. The obtained NCC was also characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). FTIR spectra analysis showed that hemicellulose and lignin were mostly removed from the EFB after bleaching and alkaline pre-treatment. XRD diffractograms revealed that EFB nanocellulose showed a crystallinity improvement of 24.3% compared to raw EFB cellulose.


2020 ◽  
Vol 5 (2) ◽  
pp. 203-209
Author(s):  
Fathia Arami B Tou ◽  
Eti Indarti ◽  
Ismail Sulaiman

Abstrak: Tandan kosong kelapa sawit merupakan limbah padat terbesar yang dihasilkan oleh perkebunan kelapa sawit. Kandungan utama tandan kosong kelapa sawit adalah selulosa. Tingginya kandungan selulosa pada tandan kosong kelapa sawit dapat dimanfaatkan sebagai bahan dasar pembuatan nanoselulosa. Nanoselulosa merupakan selulosa yang dihasilkan dalam skala nano dan memiliki sifat karakteristik yang jauh lebih baik dibandingkan dengan selulosa. Pada penelitian ini dilakukan isolasi selulosa yang berasal dari tandan kosong kelapa sawit untuk menghasilkan nanoselulosa yang dapat dimanfaatkan sebagai pencampur (filler) pada polimer polivinil alkohol (PVA), sehingga diharapkan dapat memperbaiki karakteristik pada PVA. Tujuan dari penelitian ini yaitu untuk mengkaji isolasi selulosa menjadi nanoselulosa dari tandan kosong kelapa sawit serta mempelajari karakteristik pada PVA dengan adanya penambahan nanoselulosa. Penelitian ini dilakukan menggunakan rancangan penelitian deskriptif yang terdiri dari jumlah penambahan nanoselulosa (N) dan jumlah PVA (P). Karakterisasi yang dilakukan adalah uji ketebalan, uji kuat tarik, uji FT-IR, uji WVP, dan uji UV-Vis Spectrophotometer. Hasil dari penelitian menunjukkan bahwa penambahan nanoselulosa berpengaruh terhadap karakteristik film PVA. The Effects of Adding Nanocellulose From Oil Palm Empty Fruit Bunch (Elaeis guinensis Jacq) For Characterization of Polyvinil Alcohol (PVA) Abstract: Oil palm empty fruit bunches (OPEFB) are the largest solid waste produced by oil palm plantations. The main content of oil palm empty fruit bunches is cellulose. High cellulose content in oil palm empty fruit bunches can be used for making nanocellulose. Nanocellulose is cellulose that produced in nanoscale and it has better characteristic properties compared to cellulose. In this study, cellulose from oil palm empty fruit bunches was isolated to produce nanocellulose that can be used as filler for characterization of polyvinil alcohol (PVA). The purpose of this study is to examined the isolation of cellulose into nanocellulose from oil palm empty fruit bunches and to investiage the characteristics of PVA with the addition of nanocellulose. This study was conducted using a descriptive research design consisting of 2 (two) factors. The first factor was the total addition of nanocellulose (N) and the second factor was the amount of polyvinyl alcohol (P). The characterization that carried out were a thickness test, tensile strength, Fourier Transform Infra-Red (FT-IR), Water Vapor Permeability (WVP), and UV-Vis Spectrophotometer. The results of the study showed that the addition of nanocellulose can effect the characteristics of PVA films. 


2018 ◽  
Vol 8 (1) ◽  
pp. 53-61
Author(s):  
Devi Silsia ◽  
Zulman Efendi ◽  
Febri Timotius

Midrib is one of the palm plantation  waste that has not been utilized optimally. The high cellulose content of palm midrib is potentially converted to carboxymethyl cellulose. This study aims to determine the characteristics of carboxymethyl cellulose that produced from various concentrations of trichloroacetic acid and reaction times. This study used a complete randomized design (RAL) with two factors i.e tricloroacetic acid concentration (10%, 20% and 30%) and reaction time (3 hours and 4 hours). The synthesis of carboxymethyl cellulose in this study consists of three stages i.e alkalization, carboxymethylation and purification. The carboxymethyl cellulose obtained was characterized include degree of subsitution (DS), pH, viscosity, water content, and purity. The results showed that the best carboxymethyl cellulose was obtained from the use of 20% tricloroacetic acid and 3 hours reaction time. The characterrization result include substitution degree value of 0.76, pH of 8.32, water content of 7.1%, with a  viscosity of 7.8 cP,   and purity of 92.62%. 


Author(s):  
N. Saravanan ◽  
P.S. Sampath

This research explores the extraction and characterization of natural fiber from the agro-waste of Lagenaria siceraria (LS) plant stem (commonly known as bottle guard). The extracted fiber from the waste stems has high cellulose content (79.91 %) with good tensile strength (257–717 MPa) and thermal stability (withstand up to 339.1°C). The huge percentage of crystalline index (92.4%) with the crystalline size (7.2 nm) as well as low density (1.216 g/cm3) of the LS fiber renders their possibility to use as an effective reinforcement material in lightweight eco-friendly composites for various industrial applications.


2018 ◽  
Vol 42 (3) ◽  
Author(s):  
Graziela Baptista Vidaurre ◽  
Benedito Rocha Vital ◽  
Jorge Luiz Colodette ◽  
Angélica de Cássia Oliveira ◽  
João Gabriel Missia da Silva ◽  
...  

ABSTRACT The objective of this study was to determine the effects of tree age and of pith-bark and base-top positions on anatomical characteristics, and the effect of age on the chemical components of Schizolobium amazonicum (Paricá wood). The material was obtained from commercial plantations in the states of Maranhão and Pará with ages of 5, 7, 9 and 11 years. The first three logs (2.7 m length each) were obtained from the trees of each age. Only the effect of age was analyzed for the chemical characterization of the wood. The dimensions of the fibers increased along the pith-bark direction, while wall thickness decreased and the length of the fibers increased with aging. The width of the fibers and the lume diameter increased in the base-top direction. Paricá wood presented low extractive and hemicellulose content, and high cellulose content. The anatomical characteristics were more affected by the factors under study than the chemical composition, evidencing that the chemical elements of the wood are more stable with aging in relation to the anatomical characteristics.


Sign in / Sign up

Export Citation Format

Share Document