scholarly journals Characterization of New Cellulose Fiber from the Molina (Lagenaria Siceraria) Plant

Author(s):  
N. Saravanan ◽  
P.S. Sampath

This research explores the extraction and characterization of natural fiber from the agro-waste of Lagenaria siceraria (LS) plant stem (commonly known as bottle guard). The extracted fiber from the waste stems has high cellulose content (79.91 %) with good tensile strength (257–717 MPa) and thermal stability (withstand up to 339.1°C). The huge percentage of crystalline index (92.4%) with the crystalline size (7.2 nm) as well as low density (1.216 g/cm3) of the LS fiber renders their possibility to use as an effective reinforcement material in lightweight eco-friendly composites for various industrial applications.

Author(s):  
N. Saravanan ◽  
P.S. Sampath

This research explores the extraction and characterization of natural fiber from the agro-waste of Lagenaria siceraria (LS) plant stem (commonly known as bottle guard). The extracted fiber from the waste stems has high cellulose content (79.91 %) with good tensile strength (257–717 MPa) and thermal stability (withstand up to 339.1°C). The huge percentage of crystalline index (92.4%) with the crystalline size (7.2 nm) as well as low density (1.216 g/cm3) of the LS fiber renders their possibility to use as an effective reinforcement material in lightweight eco-friendly composites for various industrial applications.


2016 ◽  
Vol 12 (9) ◽  
pp. 4382-4388 ◽  
Author(s):  
N. Saravanan ◽  
P.S. Sampath ◽  
T.A. Sukantha

This article explores the extraction and characterization of natural fiber from the agro-waste of Lagenaria siceraria (LS)plant stem (commonly known as „bottle guard‟) for the first time. The extracted fiber from the waste stems has highcellulose content (79.91 %) with good tensile strength (257–717 MPa) and thermal stability (withstand up to 339.1°C). Theimmense percentage of crystalline index (92.4%) with the crystalline size (7.2 nm) as well as low density (1.216 g/cm3) ofthe LS fiber renders their possibilit


Author(s):  
S. H. Sheikh Md. Fadzullah ◽  
Zaleha Mustafa

There is an increasing interest worldwide in the use of Pineapple Leaf Fibers (PALF) as reinforcements in polymer composites, since this type of natural fiber exhibit attractive features such as superior mechanical, physical and thermal properties, thus offer potential uses in a spectrum of applications. PALF contains high cellulose content (between 70-82%) and high crystallinity. However, being hydrophilic, it posed a compatibility issue particularly in a hydrophobic polymeric matrix system. Thus, their shortcoming need to be addressed to ensure good interfacial bonding at the fibers/matrix interphase before their full potential can be harnessed. This chapter summarized some of the important aspects relating to PALF and its reinforced composites, particularly the main characteristics of the fiber, extraction and pre-treatment process of the fibers. Following this, discussions on the available fabrication processes for both short and continuous long PALF reinforced composites are presented.


Author(s):  
S. H. Sheikh Md. Fadzullah ◽  
Zaleha Mustafa

There is an increasing interest worldwide in the use of Pineapple Leaf Fibers (PALF) as reinforcements in polymer composites, since this type of natural fiber exhibit attractive features such as superior mechanical, physical and thermal properties, thus offer potential uses in a spectrum of applications. PALF contains high cellulose content (between 70-82%) and high crystallinity. However, being hydrophilic, it posed a compatibility issue particularly in a hydrophobic polymeric matrix system. Thus, their shortcoming need to be addressed to ensure good interfacial bonding at the fibers/matrix interphase before their full potential can be harnessed. This chapter summarized some of the important aspects relating to PALF and its reinforced composites, particularly the main characteristics of the fiber, extraction and pre-treatment process of the fibers. Following this, discussions on the available fabrication processes for both short and continuous long PALF reinforced composites are presented.


2012 ◽  
Vol 549 ◽  
pp. 344-348
Author(s):  
Hui Juan Xiu ◽  
Qing Han ◽  
Ru Zhang ◽  
Li Hui Liu

Natural fibers possess many good characteristics, such as abundance, low cost, renewable, biodegradability and photo-degradability that made it a hot spot in exploiting current resources. Chemical modification is a new way to make efficient use of forestry and farming waste natural fiber resources. In this work, softwood fibers were modified by cyanoethylation with acrylonitrile. The influence of acrylonitrile dosage, reaction time, reaction temperature and the time immersed in sodium hydroxide solution with KSCN saturated on cyanoethylation were investigated. Fibers chemical structure and surface morphology before and after modification were characterized by FTIR and scanning electron microscope separately.


2021 ◽  
Vol 1 (9) ◽  
pp. 357-364
Author(s):  
Indarianti Utami ◽  
Abu Hasan ◽  
Robert Junaidi

Penelitian tentang sintesis dan karakterisasi selulosa asetat dari  ?-selulosa fiber cake kelapa sawit ini telah dilakukan dengan menggunakan anhidrida asetat sebagai acetylating agent. Penelitian ini bertujuan untuk mendapatkan selulosa asetat dengan klasifikasi selulosa diasetat yang memiliki yield produk yang tinggi, mempelajari pengaruh variasi rasio selulosa:anhidrida asetat, waktu asetilasi, dan suhu asetilasi untuk mendapatkan selulosa asetat dengan kondisi yang optimal dari ?-selulosa fiber cake kelapa sawit. Penelitian ini menggunakan variasi rasio selulosa:anhidrida asetat (1:5; 1:10; 1:15), waktu asetilasi (0,5; 1; 1,5; 2; 2,5)jam, dan suhu asetilasi (25 dan 40) oC menghasilkan 30 sampel produk. Hasil penelitian menunjukkan bahwa selulosa asetat yang didapatkan berupa selulosa diasetat dengan bentuk padatan berupa serbuk, berwarna putih gading, dan tidak berbau serta memiliki kadar ?-selulosa sebesar 84,29 % dengan kadar air 9,16 % pada rasio selulosa:anhidrida asetat (1:10), waktu asetilasi 1,5 jam, dan suhu asetilasi 40oC dengan nilai yield produk, kadar asetil, dan derajat substitusi berturut-turut 49 %, 39,97 %, dan 2,5.   Research on the synthesis and characterization of cellulose acetate from palm oil ?-cellulose fiber cake has been carried out using acetic anhydride as an acetylating agent. This study aims to obtain cellulose acetate with cellulose diacetate classification which has a high product yield, study the effect of variations in the ratio of cellulose:acetic anhydride, acetylation time, and acetylation temperature to obtain cellulose acetate with optimal conditions from palm oil ?-cellulose fiber cake. This study used variations in the ratio of cellulose:acetic anhydride (1:5; 1:10; 1:15), acetylation time (0.5; 1; 1.5; 2; 2.5) hours, and acetylation temperature (25 and 40) oC produces 30 product samples. The results showed that the cellulose acetate obtained was in the form of cellulose diacetate with a solid form in the form of powder, ivory white, and odorless and had 84.29% of a-cellulose content with 9.16% of a moisture content at the ratio of cellulose:acetic anhydride (1 :10), acetylation time 1.5 hours, and acetylation temperature 40oC with product yield, acetyl content, and degree of substitution 84.6%, 39.97%, and 2.5, respectively.


2017 ◽  
Vol 264 ◽  
pp. 9-12 ◽  
Author(s):  
Pei Gie Gan ◽  
Sung Ting Sam ◽  
Muhammad Faiq bin Abdullah ◽  
Nik Noriman bin Zulkepli ◽  
Yin Fong Yeong

In recent years, there has been a great interest in the production of nanocrystalline cellulose (NCC) due to its excellent properties. In this study, empty fruit bunch (EFB) was used as the material for the production of NCC due to its high cellulose content, inexpensive and readily-available source. NCC was prepared using acid hydrolysis at 62% for 1 hours. The morphology of NCC was determined by Field Emission Scanning Electron Microscopy (FESEM). The size of NCC was less than 50 nm in width. The obtained NCC was also characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). FTIR spectra analysis showed that hemicellulose and lignin were mostly removed from the EFB after bleaching and alkaline pre-treatment. XRD diffractograms revealed that EFB nanocellulose showed a crystallinity improvement of 24.3% compared to raw EFB cellulose.


2020 ◽  
Vol 5 (2) ◽  
pp. 203-209
Author(s):  
Fathia Arami B Tou ◽  
Eti Indarti ◽  
Ismail Sulaiman

Abstrak: Tandan kosong kelapa sawit merupakan limbah padat terbesar yang dihasilkan oleh perkebunan kelapa sawit. Kandungan utama tandan kosong kelapa sawit adalah selulosa. Tingginya kandungan selulosa pada tandan kosong kelapa sawit dapat dimanfaatkan sebagai bahan dasar pembuatan nanoselulosa. Nanoselulosa merupakan selulosa yang dihasilkan dalam skala nano dan memiliki sifat karakteristik yang jauh lebih baik dibandingkan dengan selulosa. Pada penelitian ini dilakukan isolasi selulosa yang berasal dari tandan kosong kelapa sawit untuk menghasilkan nanoselulosa yang dapat dimanfaatkan sebagai pencampur (filler) pada polimer polivinil alkohol (PVA), sehingga diharapkan dapat memperbaiki karakteristik pada PVA. Tujuan dari penelitian ini yaitu untuk mengkaji isolasi selulosa menjadi nanoselulosa dari tandan kosong kelapa sawit serta mempelajari karakteristik pada PVA dengan adanya penambahan nanoselulosa. Penelitian ini dilakukan menggunakan rancangan penelitian deskriptif yang terdiri dari jumlah penambahan nanoselulosa (N) dan jumlah PVA (P). Karakterisasi yang dilakukan adalah uji ketebalan, uji kuat tarik, uji FT-IR, uji WVP, dan uji UV-Vis Spectrophotometer. Hasil dari penelitian menunjukkan bahwa penambahan nanoselulosa berpengaruh terhadap karakteristik film PVA. The Effects of Adding Nanocellulose From Oil Palm Empty Fruit Bunch (Elaeis guinensis Jacq) For Characterization of Polyvinil Alcohol (PVA) Abstract: Oil palm empty fruit bunches (OPEFB) are the largest solid waste produced by oil palm plantations. The main content of oil palm empty fruit bunches is cellulose. High cellulose content in oil palm empty fruit bunches can be used for making nanocellulose. Nanocellulose is cellulose that produced in nanoscale and it has better characteristic properties compared to cellulose. In this study, cellulose from oil palm empty fruit bunches was isolated to produce nanocellulose that can be used as filler for characterization of polyvinil alcohol (PVA). The purpose of this study is to examined the isolation of cellulose into nanocellulose from oil palm empty fruit bunches and to investiage the characteristics of PVA with the addition of nanocellulose. This study was conducted using a descriptive research design consisting of 2 (two) factors. The first factor was the total addition of nanocellulose (N) and the second factor was the amount of polyvinyl alcohol (P). The characterization that carried out were a thickness test, tensile strength, Fourier Transform Infra-Red (FT-IR), Water Vapor Permeability (WVP), and UV-Vis Spectrophotometer. The results of the study showed that the addition of nanocellulose can effect the characteristics of PVA films. 


2021 ◽  
Vol 15 (2) ◽  
pp. 194
Author(s):  
RIZKA NURLAILA

Rice straw is a waste from rice plants that contains 37.71% cellulose, 21.99% hemicellulose, and 16.62% lignin. High cellulose content in rice straw can be used as raw material for the manufacture of Carboxymethyl Cellulose (CMC). CMC is a cellulose derivative widely used in food, pharmaceutical, detergent, textile and cosmetic products industries as a thickener, stabilizer of emulsions, or suspensions and bonding. This study aims to process rice straw waste into CMC with variations in sodium monochloroacetate of 5,6,7,8 and 9 grams. The method used in this research is by synthesis using 15% NaOH solvent, with a reaction time of 3.5 hours and 5 grams of rice straw. The results showed that the best CMC was obtained at a concentration of 9 grams of sodium monochloroacete with a yield characterization of 94%, pH 6, water content of 13.39%, degree of substitution (Ds) of 0.80, and viscosity of 1.265 cP.


2014 ◽  
Vol 86 (4) ◽  
pp. 2137-2144 ◽  
Author(s):  
CARLA F.S. ROMBALDO ◽  
ANTONIO C.L. LISBOA ◽  
MANOEL O.A. MENDEZ ◽  
APARECIDO R. COUTINHO

Jute fiber is the second most common natural cellulose fiber worldwide, especially in recent years, due to its excellent physical, chemical and structural properties. The objective of this paper was to investigate: the thermal degradation of in natura jute fiber, and the production and characterization of the generated activated carbon. The production consisted of carbonization of the jute fiber and activation with steam. During the activation step the amorphous carbon produced in the initial carbonization step reacted with oxidizing gas, forming new pores and opening closed pores, which enhanced the adsorptive capacity of the activated carbon. N2 gas adsorption at 77K was used in order to evaluate the effect of the carbonization and activation steps. The results of the adsorption indicate the possibility of producing a porous material with a combination of microporous and mesoporous structure, depending on the parameters used in the processes, with resulting specific surface area around 470 m2.g–1. The thermal analysis indicates that above 600°C there is no significant mass loss.


Sign in / Sign up

Export Citation Format

Share Document