scholarly journals Comparison of energy efficiency of vehicles powered by different fuels

2012 ◽  
Vol 150 (3) ◽  
pp. 34-43
Author(s):  
Jacek KROPIWNICKI

The comparison of operating fuel consumption in a selected certification test is the most popular method of assessing energy efficiency of vehicles. Operating conditions are defined with the use of a velocity profile, usually for only two categories: urban and extra urban driving. Problems arising from such a practice are discussed with the use of the analysis of operating fuel consumption calculated for selected traffic conditions in Gdansk and in its suburbs for vehicles with diesel and gasoline engines. The paper presents a new method of comparing energy efficiency of vehicles powered by different fuels, which allows to perform the analysis on the basis of one drive in a regular city traffic when basic parameters of the engine and the vehicle are recorded.

2021 ◽  
Vol 1 (50) ◽  
pp. 198-209
Author(s):  
Sakhno V ◽  
◽  
Dykich O ◽  

The article considers the issue of choosing a gearbox for the modernization of the BTR-70 by replacing two gasoline engines with two diesels. The object of research is the fuel economy of the BTR-70 car with different gearboxes when replacing two gasoline engines with two diesels. The purpose of the work – to determine the type and gear ratio of the transmission, which provides the best fuel efficiency of the car. Research method - mathematical modeling. When replacing a gasoline engine with a diesel of a different power and a different speed range, it is necessary to determine the gear ratio so as to provide the car with the required level of speed properties in the specified operating conditions with minimal fuel consumption. Due to the fact that the modernization of the BTR-70 involves the replacement of the engine and transmission, the further search for the gearbox was carried out on the basis of analysis of existing structures by the maximum torque of the engine. A five-speed and eight-speed MAZ gearbox and a six-speed Mercedes-Benz G 85-6 / 6.7 gearbox were used for analysis. Taking into account the fact that at a given coefficient of drag  = 0.03 the car can move only in direct gear, then for all gearboxes the fuel characteristics of steady motion will be the same as the control fuel consumption, which was 30 l / 100 km. In terms of fuel consumption during the acceleration of the car and the average kilometer fuel consumption when driving on paved roads, preference should be given to a car with a Mercedes-Benz G 85-6 / 6,7 transmission and only when driving in difficult road conditions, preference should be given to the car with 8-speed MAZ-5335 transmission. KEY WORDS: CAR, ENGINE, FUEL ECONOMY, TRANSMISSION, GEAR RATING, SPEED, COMPARATIVE EVALUATION


Transport ◽  
2021 ◽  
Vol 36 (4) ◽  
pp. 339-353
Author(s):  
Sergejus Lebedevas ◽  
Nadežda Lazareva ◽  
Paulius Rapalis ◽  
Vygintas Daukšys ◽  
Tomas Čepaitis

According to the International Council on Combustion Engines (CIMAC) and International Maritime Organization (IMO) statistics, the rational selection of Marine Bunker Fuel (MBF) properties is an effective way to improve operating conditions and energy efficiency of all types of marine Diesel Engines (DEs). The publication presents the results of studies on the influence of heavy and distillate MBF properties on the characteristics of different DE types: high-speed (Caterpillar 3512B, MTU 8V 396TB), medium-speed (SKL VDS 48/42, ChN 26.5/31) ir low-speed (MAN B&W 6S60MC). The aim of work is to form a methodological framework for assessing the influence of marine fuel properties on the energy performance of different types of ship power plants. Numerical methods show that in the case of unfavourable selection of the density and viscosity of marine fuels regulated by the standard ISO 8217:2017, the changes in specific fuel consumption be reach up to 10% low-speed, 4…7% medium-speed, and 2…3% high-speed DEs. As the density varies from light grades to 1010 kg/m3, the change in be is 3…4%. At low viscosity, as the density increases to 1030 kg/m3, the low-speed engine comparative fuel consumption increases by 5%. It is recommended not to use fuel with a density >1010 kg/m3 and a viscosity <300…400 mm2/s. Developed solutions for the rational selection of bunkered marine fuel properties for a specific DE model trough the influence of density and viscosity on fuel injection and combustion characteristics based on multiparametric diagrams of relative fuel consumption change.


2021 ◽  
Vol 2130 (1) ◽  
pp. 012001
Author(s):  
L Grabowski

Abstract Simulation studies can be used to determine the fuel consumption and carbon dioxide emissions of city buses. The operating conditions of such vehicles are characterised by a very high variability of vehicle speed due to the large number of stops along the route of the bus. During vehicle testing, driving cycles are used to replicate the real-world conditions and to achieve repeatable test conditions. Such a driving cycle is a profile of speed represented as a function of time or as a function of distance. The speed profile over time can be an advantageous determinant, based on laboratory tests, for estimating fuel consumption and pollutant emissions of city buses. The research subject of this paper was the simulation of bus driving under simulated urban traffic conditions, carried out by means of the VECTO software. VECTO is a tool designed to perform the calculations of fuel consumption and carbon dioxide emissions of vehicles. It enables to model the powertrain of trucks and buses and to carry out simulations on various routes defined by driving cycles. The test object was a mega class bus, equipped with a 225 kW engine. The bus has three axles, including the rear drive axle. The scope of research included four cycles: urban, interurban, urbandelivery and interurban. Each of these was analysed in terms of speed and road gradient. The aim of this work was to perform a simulation study of the effect of the vehicle traffic conditions on the amount of CO2 emitted and fuel consumption. The obtained results were analysed.


Author(s):  
Jingyi Wang ◽  
Guohua Song ◽  
Lei Yu ◽  
Hongyu Lu ◽  
Jianping Sun ◽  
...  

The waste of fuel causing by traffic congestion is a challenge faced by urban traffic management authorities and travelers. At the same time, massive traffic data allows high-resolution understanding of on-road operating conditions. The development of an algorithm to estimate total fuel consumption from primary traffic condition indices, for example, network average speed, will simplify the evaluation of fuel consumption from the management perspective and guide strategy at the local area level. The objective of this study is to develop a macroscopic relationship between total fuel consumption and the network average speed for an urban road network. Floating car data (FCD) covering 13 weekdays was collected in the field in Beijing, China. FCD from 10 ordinary weekdays are used to develop a quantitative model to define the macroscopic relationship between total fuel consumption and network average speed. The model is then validated by the FCD of the other three weekdays when the traffic demand is low. The average of the resultant absolute relative errors from the validation is found to be 4.65%, which indicates a reasonably high reliability of the developed model under various traffic conditions. The facility- and speed-specific distributions of vehicle kilometers traveled (VKT) are analyzed to explain the macroscopic relationship. The result indicates that the link VKT distribution at different speeds varies greatly when the traffic became congested on expressways. The link VKT distributions are similar for different traffic conditions on arterials and collectors.


2021 ◽  
Vol 138 ◽  
pp. 103805
Author(s):  
Imre Pázsit ◽  
Luis Alejandro Torres ◽  
Mathieu Hursin ◽  
Henrik Nylén ◽  
Victor Dykin ◽  
...  

Author(s):  
Jin Yu ◽  
Pengfei Shen ◽  
Zhao Wang ◽  
Yurun Song ◽  
Xiaohan Dong

Heavy duty vehicles, especially special vehicles, including wheel loaders and sprinklers, generally work with drastic changes in load. With the usage of a conventional hydraulic mechanical transmission, they face with these problems such as low efficiency, high fuel consumption and so forth. Some scholars focus on the research to solve these issues. However, few of them take into optimal strategies the fluctuation of speed ratio change, which can also cause a lot of problems. In this study, a novel speed regulation is proposed which cannot only solve problems above but also overcome impact caused by speed ratio change. Initially, based on the former research of the Compound Coupled Hydro-mechanical Transmission (CCHMT), the basic characteristics of CCHMT are analyzed. Besides, to solve these problems, dynamic programming algorithm is utilized to formulate basic speed regulation strategy under specific operating condition. In order to reduce the problem caused by speed ratio change, a new optimization is applied. The results indicate that the proposed DP optimal speed regulation strategy has better performance on reducing fuel consumption by up to 1.16% and 6.66% in driving cycle JN1015 and in ECE R15 working condition individually, as well as smoothing the fluctuation of speed ratio by up to 12.65% and 19.01% in those two driving cycles respectively. The processes determining the speed regulation strategy can provide a new method to formulate the control strategies of CCHMT under different operating conditions particularlly under real-world conditions.


Author(s):  
Dimitrios T. Hountalas ◽  
Spiridon Raptotasios ◽  
Antonis Antonopoulos ◽  
Stavros Daniolos ◽  
Iosif Dolaptzis ◽  
...  

Currently the most promising solution for marine propulsion is the two-stroke low-speed diesel engine. Start of Injection (SOI) is of significant importance for these engines due to its effect on firing pressure and specific fuel consumption. Therefore these engines are usually equipped with Variable Injection Timing (VIT) systems for variation of SOI with load. Proper operation of these systems is essential for both safe engine operation and performance since they are also used to control peak firing pressure. However, it is rather difficult to evaluate the operation of VIT system and determine the required rack settings for a specific SOI angle without using experimental techniques, which are extremely expensive and time consuming. For this reason in the present work it is examined the use of on-board monitoring and diagnosis techniques to overcome this difficulty. The application is conducted on a commercial vessel equipped with a two-stroke engine from which cylinder pressure measurements were acquired. From the processing of measurements acquired at various operating conditions it is determined the relation between VIT rack position and start of injection angle. This is used to evaluate the VIT system condition and determine the required settings to achieve the desired SOI angle. After VIT system tuning, new measurements were acquired from the processing of which results were derived for various operating parameters, i.e. brake power, specific fuel consumption, heat release rate, start of combustion etc. From the comparative evaluation of results before and after VIT adjustment it is revealed an improvement of specific fuel consumption while firing pressure remains within limits. It is thus revealed that the proposed method has the potential to overcome the disadvantages of purely experimental trial and error methods and that its use can result to fuel saving with minimum effort and time. To evaluate the corresponding effect on NOx emissions, as required by Marpol Annex-VI regulation a theoretical investigation is conducted using a multi-zone combustion model. Shop-test and NOx-file data are used to evaluate its ability to predict engine performance and NOx emissions before conducting the investigation. Moreover, the results derived from the on-board cylinder pressure measurements, after VIT system tuning, are used to evaluate the model’s ability to predict the effect of SOI variation on engine performance. Then the simulation model is applied to estimate the impact of SOI advance on NOx emissions. As revealed NOx emissions remain within limits despite the SOI variation (increase).


Author(s):  
Teja Gonguntla ◽  
Robert Raine ◽  
Leigh Ramsey ◽  
Thomas Houlihan

The objective of this project was to develop both engine performance and emission profiles for two test fuels — a 6% water-in-diesel oil emulsion (DOE-6) fuel and a neat diesel (D100) fuel. The testing was performed on a single cylinder, direct-injection, water-cooled diesel engine coupled to an eddy current dynamometer. Output parameters of the engine were used to calculate Brake Specific Fuel Consumption (BSFC) and Engine Efficiency (η) for each test fuel. DOE-6 fuels generated a 24% reduction in NOX and a 42% reduction in Carbon Monoxide emissions over the tested operating conditions. DOE-6 fuels presented higher ignition delays — between 1°-4°, yielded 1%–12% lower peak cylinder pressures and produced up to 5.5% lower exhaust temperatures. Brake Specific Fuel consumption increased by 6.6% for the DOE-6 fuels as compared to the D100 fuels. This project is the first research done by a New Zealand academic institution on water-in-diesel emulsion fuels.


1998 ◽  
Vol 507 ◽  
Author(s):  
F. Blecher ◽  
K. Seibel ◽  
M. Hillebrand ◽  
M. Böhm

ABSTRACTThe series resistance limits the linearity of photodiodes and decreases the efficiency of solar cells. It is usually determined from IV-measurements for moderate and high forward current density. This method, however, provides only partial information about Rs, since the series resistance depends on the operating point. An alternative method is based on noise measurements. System noise of the measuring system with a low-noise current-voltage converter has been investigated. A new method for extraction of photodiode series resistance from noise measurements is suggested. Noise measurements are carried out for a-Si:H pin diodes. The series resistance of an amorphous pin diode has been extracted for different operating conditions using the new measurement method.


Author(s):  
Robson L. Silva ◽  
Bruno V. Sant′Ana ◽  
José R. Patelli ◽  
Marcelo M. Vieira

This paper aims to identify performance improvements in cooker-top gas burners for changes in its original geometry, with aspect ratios (ARs) ranging from 0.25 to 0.56 and from 0.28 to 0.64. It operates on liquefied petroleum gas (LPG) and five thermal power (TP) levels. Considering the large number of cooker-top burners currently being used, even slight improvements in thermal performance resulting from a better design and recommended operating condition will lead to a significant reduction of energy consumption and costs. Appropriate instrumentation was used to carry out the measurements and methodology applied was based on regulations from INMETRO (CONPET program for energy conversion efficiency in cook top and kilns), ABNT (Brazilian Technical Standards Normative) and ANP—National Agency of Petroleum, Natural Gas (NG) and Biofuels. The results allow subsidizing recommendations to minimum energy performance standards (MEPS) for residential use, providing also higher energy conversion efficiency and/or lower fuel consumption. Main conclusions are: (i) Smaller aspect ratios result in the same heating capacity and higher efficiency; (ii) higher aspect ratios (original burners) are fuel consuming and inefficient; (iii) operating conditions set on intermediate are lower fuel consumption without significant differences in temperature increases; (iv) Reynolds number lower than 500 provides higher efficiencies.


Sign in / Sign up

Export Citation Format

Share Document