scholarly journals Trends in Gasoline Engines Technology

2005 ◽  
Vol 121 (2) ◽  
pp. 3-19
Author(s):  
Hubert FRIEDL ◽  
Paul KAPUS

The development of vehicle powertrains is increasingly challenged by emission legislation and by the end-users’ fueleconomy demands. In order to meet these requirements it is necessary to continuously improve existing powertrains and to develop totally new generations of engines. For Gasoline engines in passenger cars the most important task is to improve fuel efficiency. Therefore, a big variety of different technologies potentially can be applied. The system range from simple variable charge motion and low cost variable valve timing devices up to highly sophisticated systems like fully variable valve actuation systems and also combustion with auto ignition (HCCI). Direct Gasoline Injection systems of Generation 1 (wall guided systems) and even more the systems of Generation 2 (spray guided systems) improve fuel efficiency, but the significant oncosts for NOx exhaust aftertreatment have to be taken into consideration. Due to its full load benefits homogeneous DGI is a preferred solution for high performance engines as well as in combination with turbocharging for downsizing/downrating concepts. The combination of turbocharging, direct injection and cam phase shifter has proven to be a highly attractive package combining good fuel economy with fun to drive. The different gasoline engines technologies will have to be applied according to the specific needs of their application and brand specific requirements. Even keeping high performance characteristics, fuel consumption will be reduced continuously and future legislative limits can be met. However, system complexity and cost will increase.

Designs ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 11
Author(s):  
Albert Boretti

Thanks to the adoption of high pressure, direct injection and jet ignition, plus electrically assisted turbo-compounding, the fuel conversion efficiency of Fédération Internationale de l'Automobile (FIA) F1 engines has been spectacularly improved up to values above 46% peak power, and 50% peak efficiency, by running lean of stoichiometry stratified in a high boost, high compression ratio environment. Opposite, Federation Internationale de Motocyclisme (FIM) Moto-GP engines are still naturally aspirated, port injected, spark ignited, working with homogeneous mixtures. This old fashioned but highly optimized design is responsible for relatively low fuel conversion efficiencies, and yet delivers an outstanding specific power density of 200 kW/liter. The potential to improve the fuel conversion efficiency of Moto-GP engines through the adoption of direct injection and jet ignition, prevented by the current rules, is herein discussed based on simulations. As two-stroke engines may benefit from direct injection and jet ignition more than four-stroke engines, the opportunity of a return of two-stroke engines is also argued, similarly based on simulations. About the same power, but at a better fuel efficiency, of today’s 1000 cm3 four stroke engines, may be obtained with lean stratified direct injection jet ignition engines, four-stroke of 1450 cm3, or two-stroke of 1050 cm3. About the same power and fuel efficiency may also be delivered with stoichiometric engines direct injection jet ignition two-stroke of 750 cm3.


Author(s):  
Zachary G. Mills ◽  
Charles E. A. Finney ◽  
K. Dean Edwards ◽  
J. Allen Haynes

To meet the demand for greater fuel efficiency in passenger vehicles, various strategies are employed to increase the power density of light-duty SI engines, with attendant thermal or system efficiency increases. One approach is to incorporate higher-performance alloys for critical engine components. These alloys can have advantageous thermal or mechanical properties at higher temperatures, allowing for components constructed from these materials to meet more severe pressure and temperature demands, while maintaining durability. Advanced alloys could reduce the need for charge enrichment to protect certain gas-path components at high speed and load conditions, permit more selective cooling to reduce heat-transfer losses, and allow engine downsizing, while maintaining performance, by achieving higher cylinder temperatures and pressures. As a first step in investigating downsizing strategies made possible through high-performance alloys, a GT-Power model of a 4-cylinder 1.6L turbocharged direct-injection SI engine was developed. The model was tuned and validated against experimental dynamometer data collected from a corresponding engine. The model was then used to investigate various operating strategies for increasing power density. Results from these investigations will provide valuable insight into how new materials might be utilized to meet the needs of future light-duty engines and will serve as the basis for a more comprehensive investigation using more-detailed thermo-mechanical modeling.


Author(s):  
Nicolò Cavina ◽  
Matteo De Cesare ◽  
Vittorio Ravaglioli ◽  
Fabrizio Ponti ◽  
Federico Covassin

Turbocharger performance optimization on passenger car engines is particularly challenging, especially in case of severe engine downsizing and downspeeding. On high performance engines (e.g., heavy duty truck applications) turbocharger speed measurement is usually performed with the aim of maximizing engine power and torque, limiting turbocharger over-speed, which is harmful for its durability and reliability. This solution is too expensive for passenger cars, and the turbocharger speed sensor is typically not available. In this work, an innovative and low cost sensing chain for the rotational speed evaluation of the turbocharger is applied. With this information, obtained via an acoustic sensor, a new turbocharger control architecture has been developed to optimize turbocharger performance, in order to improve engine output torque under full load conditions. After a brief description of the new sensing chain and of the electronic components developed to manage this kind of information, the paper shows the new control architecture that takes advantage of the turbocharger speed information. Moreover, experimental results on a small turbocharged Diesel engine for passenger car applications are presented, demonstrating the achieved benefits.


2014 ◽  
Vol 663 ◽  
pp. 49-53
Author(s):  
Muhammad Faiz Abdul Hamid ◽  
Wan Mohd Faizal Wan Mahmood ◽  
Mohd Radzi Abu Mansor ◽  
Shahrir Abdullah

Globally, the transport sector consumes the biggest share of the fuel supply. Common fuels used in the transport sector are petrol and diesel. Diesel engines have been proven to be more advantageous over gasoline engines, in the aspects of fuel efficiency and engine reliability. The use of diesel passenger cars is very popular in European countries compared to Malaysia. A wider use of diesel-powered cars in Malaysia may benefit the car users, government and the country. The study of the causes of the low percentage of diesel-powered car usage in Malaysia was examined in this present study by using the latest data available in the literature, and by conducting a survey to measure the perceptions and views of the Malaysian public towards diesel-powered passenger cars. Results of this study showed that most of the respondents admitted that diesel engines give more savings. However, respondent perception that diesel-powered cars emit noise and high air pollution of the environment is the main reason Malaysians not choosing diesel-powered cars.


1994 ◽  
Vol 365 ◽  
Author(s):  
G. Rajesh ◽  
Ram B. Bhagat ◽  
Emily Nelson

Ceramic matrix composites (CMCs) are being considered for a broad range of aerospace applications that include various structural components for the aircraft engine and the space shuttle main engine. Use of silicon-based CMCs which have high thermal conductivity, allows for improvements in fuel efficiency due to increased engine temperatures and pressures, which in turn generate more power and thrust. Furthermore, CMCs offer significant potential for raising the thrust-to-weight of gas turbine engines by tailoring directions of high specific reliability using design-based fiber architecture. One of the low-cost processing techniques for the silicon-based CMCs is the reactive melt infiltration [1] of silicon into the preform of carbon-coated silicon carbide fiber. However, fabrication of high performance SiC/SiC composites requires a deeper understanding of the infiltration kinetics such that fibers are protected from adverse reaction with the molten metal, that the preform is thoroughly infiltrated, and that there is no residual silicon left unreacted.


2013 ◽  
Vol 154 (3) ◽  
pp. 96-103
Author(s):  
Piotr BIELACZYC ◽  
Andrzej SZCZOTKA ◽  
Joseph WOODBURN

Spark-ignition (SI) engines are highly susceptible to excess emissions when started at low ambient temperatures, a phenomenon which has been widely discussed in the literature. Direct injection diesel engines feature a markedly different fuelling and combustion strategy, and as such their emissions behaviour is somewhat different from gasoline engines. The excess emissions of diesel engines at low ambient temperatures should also differ. The aim of this study was to compare excess emissions of gaseous and solid pollutants over a legislative driving cycle (the New European Driving Cycle, NEDC) following cold start at a low ambient temperature for both engine types. This paper examines emissions at low ambient temperatures with a special focus on cold start; emissions are also compared to start-up at a higher ambient temperature (24 °C). The causes of excess emissions andfuel consumption are briefly discussed. A series of tests were performed on European Euro 5 passenger cars on a chassis dynamometer within an advanced climate-controlled test laboratory at BOSMAL Automotive Research and Development Institute, Poland. Emissions data obtained over the Urban Driving Cycle by testing at 24 °C and at -7 °C, are presentedfor a selection ofmodern Euro 5 gasoline and diesel vehicles representative of the European passenger carfleet. A full modal emissions analysis was also conducted at 24 °C and at -7 °C over the NEDC. Emissions andfuel consumption were substantially higher at -7 °C than at 24 °C.


Sign in / Sign up

Export Citation Format

Share Document