scholarly journals Comparative study of combustion and emissions of diesel engine fuelled with FAME and HVO

2021 ◽  
Author(s):  
Jacek Hunicz ◽  
Paweł Krzaczek ◽  
Michał Gęca ◽  
Arkadiusz Rybak ◽  
Maciej Mikulski

This study investigates combustion and emission characteristics of a contemporary single-cylinder compression ignition engine fuelled with diesel, fatty acid methyl esters (FAME) and hydrotreated vegetable oil (HVO). These two drop-in fuels have an increasing share in automotive supply chains, yet have substantially different physical and auto-ignition properties. HVO has a lower viscosity and higher cetane number, and FAME has contrary characteristics. These parameters heavily affect mixture formation and the following combustion process, causing that the engine pre-optimized to one fuel option can provide deteriorated performance and excess emissions if another sustainable option is applied. To investigate the scale of this problem, injection pressure sweeps were performed around the stock, low NOX and low PM engine calibration utilizing split fuel injection. The results showed that FAME and HVO prefer lower injection pressures than diesel fuel, with the benefits of simultaneous reduction of all emission indicators compared to DF. Additionally, reduction of injection pressure from 80 MPa to 60 MPa for biodiesels at low engine load resulted in improved brake thermal efficiency by 1 percentage point, due to reduced parasitic losses in the common rail system.

2021 ◽  
Vol 20 (5) ◽  
pp. 427-433
Author(s):  
G. M. Kuharonak ◽  
M. Klesso ◽  
A. Predko ◽  
D. Telyuk

The purpose of the work is to consider the organization of the working process of six-cylinder diesel engines with a power of 116 and 156 kW and exhaust gas recirculation. The following systems and components were used in the experimental configurations of the engine: Common Rail BOSСH accumulator fuel injection system with an injection pressure of 140 MPa, equipped with electro-hydraulic injectors with seven-hole nozzle and a 500 mm3 hydraulic flow; direct fuel injection system with MOTORPAL fuel pump with a maximum injection pressure of 100 MPa, equipped with MOTORPAL and AZPI five-hole nozzle injectors; two combustion chambers with volumes of 55 and 56 cm3 and bowl diameters of 55.0 and 67.5 mm, respectively; cylinder heads providing a 3.0–4.0 swirl ratio for Common Rail system, 3.5–4.5 for mechanical injection system. The recirculation rate was set by gas throttling before the turbine using a rotary valve of an original design. The tests have been conducted at characteristic points of the NRSC cycle: minimum idle speed 800 rpm, maximum torque speed 1600 rpm, rated power speed 2100 rpm. It has been established that it is possible to achieve the standards of emissions of harmful substances: on the 116 kW diesel engine using of direct-action fuel equipment and a semi-open combustion chamber; on the 156 kW diesel using Common Rail fuel supply system of the Low Cost type and an open combustion chamber.


2020 ◽  
Vol 197 ◽  
pp. 06010
Author(s):  
Antonio Caricato ◽  
Antonio Paolo Carlucci ◽  
Antonio Ficarella ◽  
Luciano Strafella

In this paper, the effect of late injection on combustion and emission levels has been investigated on a single cylinder compression ignition engine operated in dual-fuel mode injecting methane along the intake duct and igniting it through a pilot fuel injected directly into the combustion chamber. During the tests, the amount of pilot fuel injected per cycle has been kept constant, while the amount of methane has been varied on three levels. Therefore, three levels of engine load have been tested, while speed has been kept constant equal to 1500rpm. Pilot injection pressure has been varied on three set points, namely 500, 1000 and 1500 bar. For each engine load and injection pressure, pilot injection timing has been swept on a very broad range of values, spanning from very advanced to very late values. The analysis of heat release rate indicates that MK-like conditions are established in dual-fuel mode with late pilot injection. In these conditions, pollutant species, and NOx levels in particular, are significantly reduced without penalization – and in several conditions with improvement – on fuel conversion efficiency.


2015 ◽  
Vol 19 (6) ◽  
pp. 1943-1957
Author(s):  
Simona Merola ◽  
Luca Marchitto ◽  
Cinzia Tornatore ◽  
Gerardo Valentino

Combustion process was studied from the injection until the late combustion phase in an high swirl optically accessible combustion bowl connected to a single cylinder 2-stroke high pressure common rail compression ignition engine. Commercial diesel and blends of diesel and n-butanol (20%: BU20 and 40%: BU40) were used for the experiments. A pilot plus main injection strategy was investigated fixing the injection pressure and fuel mass injected per stroke. Two main injection timings and different pilot-main dwell times were explored achieving for any strategy a mixing controlled combustion. Advancing the main injection start, an increase in net engine working cycle (>40%) together with a strong smoke number decrease (>80%) and NOx concentration increase (@50%) were measured for all pilot injection timings. Compared to diesel fuel, butanol induced a decrease in soot emission and an increase in net engine working area when butanol ratio increased in the blend. A noticeable increase in NOx was detected at the exhaust for BU40 with a slight effect of the dwell-time. Spectroscopic investigations confirmed the delayed auto-ignition (~60 ms) of the pilot injection for BU40 compared to diesel. The spectral features for the different fuels were comparable at the start of combustion process, but they evolved in different ways. Broadband signal caused by soot emission, was lower for BU40 than diesel. Different balance of the bands at 309 and 282 nm, due to different OH transitions, were detected between the two fuels. The ratio of these intensities was used to follow flame temperature evolution.


2014 ◽  
Vol 592-594 ◽  
pp. 1632-1637
Author(s):  
Ramalingam Senthil ◽  
C. Paramasivam ◽  
Rajendran Silambarasan

Nerium methyl ester, an esterified biofuel, has an excellent cetane number and a reasonable calorific value. It closely resembles the behaviour of diesel. However, being a fuel of different origin, the standard design limits of a diesel engine is not suitable for Nerium methyl ester (NME). Therefore, in this work, a set of design and operational parameters are studied to find out the optimum performance of Nerium methyl ester run diesel engine. This work targets at finding the effects of the engine design parameter viz. fuel injection pressure (IP) on the performance with regard to specific fuel consumption (SFC), brake thermal efficiency (BTHE) and emissions of CO, CO2, HC, NOxwith N20 as fuel. Comparison of performance and emission was done for different values of injection pressure to find best possible condition for operating engine with NME. For small sized direct injection constant speed engines used for agricultural applications, the optimum injection pressure was found as 240bar.Methyl esters from Nerium, with properties close to diesel; show better performance and emission characteristics. Hence Nerium (N20) blend can be used in existing diesel engines without compromising the engine performance. Diesel (25%) thus saved will greatly help the interests of railways in meeting the demand for fuel,as diesel trains are operated at maximum load condition.


Author(s):  
Jan-Simon Schäpel ◽  
Rudibert King ◽  
Fatma Yücel ◽  
Fabian Völzke ◽  
Christian Oliver Paschereit ◽  
...  

Approximate constant volume combustion (aCVC) is a promising way to optimize the combustion process in a gas turbine, which would exceed the gain in efficiency resulting from optimizing other components significantly. This work deals with a recently proposed approach: shockless explosion combustion (SEC). Compared to already known concepts, such as pulsed detonation combustion (PDC), it overcomes several disadvantages, e.g., sharp pressure transitions and entropy generation due to shock waves. For an SEC, accurate fuel stratification is required to achieve a quasi-homogeneous auto-ignition. In an atmospheric test rig quasi-homogeneous ignitions were achieved previously in non-resonant operation. To achieve a resonant operation, which goes along with a higher firing frequency, lower ignition and injection times are required. For this purpose, an array of solenoid valves was designed to allow for highly dynamic operation within short filling time spans. Using a novel mixed-integer control approach, these solenoid valves were actuated such that a desired fuel profile was generated. In this paper, the mentioned test rig was used for non-reacting fuel measurements to compare the quality of the axial fuel stratification achieved by using the valve array with the one achieved by using a slower proportional valve. In the experimental investigation the actuation with the valve array proved to adjust the required fuel stratification with the same quality as the actuation with the proportional valve, which was already successfully applied to the reactive set-up. Hence, the mixed-integer controlled valve array is considered a useful concept for upcoming resonant reactive SEC investigations.


Author(s):  
Gong Chen

It is always desirable for a heavy-duty compression-ignition engine, such as a diesel engine, to possess a capability of using alternate liquid fuels without significant hardware modification to the engine baseline. Because fuel properties vary between various types of liquid fuels, it is important to understand the impact and effects of the fuel properties on engine operating and output parameters. This paper intends and attempts to achieve that understanding and to predict the qualitative effects by studying analytically and qualitatively how a heavy-duty compression-ignition engine would respond to the variation of fuel properties. The fuel properties considered in this paper mainly include the fuel density, compressibility, heating value, viscosity, cetane number, and distillation temperature range. The qualitative direct and end effects of the fuel properties on engine bulk fuel injection, in-cylinder combustion, and outputs are analyzed and predicted. Understanding these effects can be useful in analyzing and designing a compression-ignition engine for using alternate liquid fuels.


Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 946 ◽  
Author(s):  
Wojciech Tutak ◽  
Arkadiusz Jamrozik

The aim of the work is a comparison of two combustion systems of fuels with different reactivity. The first is combustion of the fuel mixture and the second is combustion in a dual-fuel engine. Diesel fuel was burned with pure ethanol. Both methods of co-firing fuels have both advantages and disadvantages. Attention was paid to the combustion stability aspect determined by COVIMEP as well as the probability density function of IMEP. It was analyzed also the spread of the maximum pressure value, the angle of the position of maximum pressure. The influence of ethanol on ignition delay time spread and end of combustion process was evaluated. The experimental investigation was conducted on 1-cylinder air cooled compression ignition engine. The test engine operated with constant rpm equal to 1500 rpm and constant angle of start of diesel fuel injection. The engine was operated with ethanol up to 50% of its energy fraction.


2018 ◽  
Vol 184 ◽  
pp. 01013
Author(s):  
Corneliu Cofaru ◽  
Mihaela Virginia Popescu

The paper presents the research designed to develop a HCCI (Homogenous Charge Compression Ignition) engine starting from a spark ignition engine platform. The chosen test engine was a single cylinder, four strokes provided with a carburettor. The results of experimental research data obtained on this version were used as a baseline for the next phase of the research. In order to obtain the HCCI configuration, the engine was modified, as follows: the compression ratio was increased from 9.7 to 11.5 to ensure that the air – fuel mixture auto-ignite and to improve the engine efficiency; the carburettor was replaced by a direct fuel injection system in order to control precisely the fuel mass per cycle taking into account the measured intake air-mass; the valves shape were modified to provide a safety engine operation by ensuring the provision of sufficient clearance beetween the valve and the piston; the exchange gas system was changed from fixed timing to variable valve timing to have the possibilities of modification of quantities of trapped burnt gases. The cylinder processes were simulated on virtual model. The experimental research works were focused on determining the parameters which control the combustion timing of HCCI engine to obtain the best energetic and ecologic parameters.


Sign in / Sign up

Export Citation Format

Share Document