scholarly journals Performance of a drop-in biofuel emulsion on a single-cylinder research diesel engine

2016 ◽  
Vol 166 (3) ◽  
pp. 9-16
Author(s):  
Maria Bogarra-Macias ◽  
Omid Doustdar ◽  
Mohammed Fayad ◽  
Miroslaw Wyszyński ◽  
Athanasios Tsolakis ◽  
...  

Current targets in reducing CO2 and other greenhouse gases as well as fossil fuel depletion have promoted the research for alternatives to petroleum-based fuels. Pyrolysis oil (PO) from biomass and waste oil is seen as a method to reduce life-cycle CO2, broaden the energy mix and increase the use of renewable fuels. The abundancy and low prices of feedstock have attracted the attention of biomass pyrolysis in order to obtain energy-dense products. Research has been carried out in optimising the pyrolysis process, finding efficient ways to convert the waste to energy. However, the pyrolysis products have a high content in water, high viscosity and high corrosiveness which makes them unsuitable for engine combustion. Upgrading processes such as gasification, trans-esterification or hydro-deoxynegation are then needed. These processes are normally costly and require high energy input. Thus, emulsification in fossil fuels or alcohols is being used as an alternative. In this research work, the feasibility of using PO-diesel emulsion in a single-cylinder diesel engine has been investigated. In-cylinder pressure, regulated gaseous emissions, particulate matter, fuel consumption and lubricity analysis reported. The tests were carried out of a stable non-corrosive wood pyrolysis product produced by Future Blends Ltd of Milton Park, Oxfordshire, UK. The product is trademarked by FBL, and is a stabilized fraction of raw pyrolysis oil produced in a process for which the patent is pending. The results show an increase in gaseous emissions, fuel consumption and a reduction in soot. The combustion was delayed with the emulsified fuel and a high variability was observed during engine operation.

Author(s):  
Brian T. Fisher ◽  
Jim S. Cowart ◽  
Michael R. Weismiller ◽  
Zachary J. Huba ◽  
Albert Epshteyn

Energetic nanoparticles are promising fuel additives due to their high specific surface area, high energy content, and catalytic capability. Novel amorphous reactive mixed-metal nanopowders (RMNPs) containing Ti, Al, and B, synthesized via a sonochemical reaction, have been developed at the Naval Research Laboratory. These materials have higher energy content than commercial nano-aluminum (nano-Al), making them potentially useful as energy-boosting fuel components. This work examines combustion of RMNPs in a single-cylinder diesel engine (Yanmar L48V). Fuel formulations included up to 4 wt % RMNPs suspended in JP-5, and equivalent nano-Al suspensions for comparison. Although the effects were small, both nano-Al and RMNPs resulted in shorter ignition delays, retarded peak pressure locations, decreased maximum heat release rates, and increased burn durations. A similar but larger engine (Yanmar L100V) was used to examine fuel consumption and emissions for a suspension of 8 wt % RMNPs in JP-5 (and 8 wt % nano-Al for comparison). The engine was operated as a genset under constant load with nominal gross indicated mean effective pressure of 6.5 bar. Unfortunately, the RMNP suspension led to deposits on the injector tip around the orifices, while nano-Al suspensions led to clogging in the fuel reservoir and subsequent engine stall. Nevertheless, fuel consumption rate was 17% lower for the nano-Al suspension compared to baseline JP-5 for the time period prior to stall, which demonstrates the potential value of reactive metal powder additives in boosting volumetric energy density of hydrocarbon fuels.


Author(s):  
Brian T. Fisher ◽  
Jim S. Cowart ◽  
Michael R. Weismiller ◽  
Zachary J. Huba ◽  
Albert Epshteyn

Energetic nanoparticles have shown promise as additives to liquid hydrocarbon fuels due to their high specific surface area, high energy content, and catalytic capability. Novel amorphous reactive mixed-metal nanopowders (RMNPs) containing Ti, A1, and B, synthesized via a sonochemical reaction, have been developed at the Naval Research Laboratory. These materials have higher energy content than commercial nano-aluminum (nano-A1), making them potentially useful as energy-boosting fuel components rather than simply catalytic additives. This work examines the combustion behavior of these RMNPs in a small, single-cylinder, 4-stroke diesel engine (Yanmar L48V). Fuel formulations included varying fractions of RMNPs, up to 4 wt. %, suspended in jet fuel JP-5. Comparative experiments also were conducted with equivalent suspensions of nano-A1 in JP-5. For each fuel formulation, with the engine operating at constant speed of 3000 RPM, load was varied across its full range. At each load, cylinder pressure data were recorded for 30 seconds (750 cycles) to enable determination of important combustion characteristics. Although differences were small, both nano-A1 and RMNPs resulted in shorter ignition delays, retarded peak pressure locations, decreased maximum rates of heat release, and increased burn durations. In addition, a similar but larger engine (Yanmar L100V) was used to examine fuel consumption and emissions for a suspension of 8 wt. % RMNPs in JP-5 (and 8 wt. % nano-A1 for comparison). The engine was connected to a genset operating at a constant speed of 3600 RPM and constant load with nominal gIMEP (gross indicated mean effective pressure) of 6.5 bar. Fuel consumption rate was determined from time required to consume 175 mL of each fuel formulation, while emissions levels were recorded once per minute during that time. Unfortunately, combustion data and visual inspection of the injector indicated that RMNPs led to significant deposits on the injector tip and in and around the orifices, which had a negative impact on both fuel consumption rate and emissions. The engine stalled after four minutes of operation with the nano-A1-laden fuel, apparently due to clogging at the bottom of the fuel reservoir. It was concluded that particle settling in the fuel reservoir and particle clogging in the fuel system and injector were significant problems for these composite liquid/powder fuels. Nevertheless, fuel consumption rate was found to be 17% lower for the nano-A1 suspension compared to baseline JP-5 for the period of time that the engine was able to operate, which is a significant achievement towards demonstrating the potential value of reactive metal powder additives in boosting the volumetric energy density of hydrocarbon fuels.


Author(s):  
Petar Kazakov ◽  
Atanas Iliev ◽  
Emil Marinov

Over the decades, more attention has been paid to emissions from the means of transport and the use of different fuels and combustion fuels for the operation of internal combustion engines than on fuel consumption. This, in turn, enables research into products that are said to reduce fuel consumption. The report summarizes four studies of fuel-related innovation products. The studies covered by this report are conducted with diesel fuel and usually contain diesel fuel and three additives for it. Manufacturers of additives are based on already existing studies showing a 10-30% reduction in fuel consumption. Comparative experimental studies related to the use of commercially available diesel fuel with and without the use of additives have been performed in laboratory conditions. The studies were carried out on a stationary diesel engine СМД-17КН equipped with brake КИ1368В. Repeated results were recorded, but they did not confirm the significant positive effect of additives on specific fuel consumption. In some cases, the factors affecting errors in this type of research on the effectiveness of fuel additives for commercial purposes are considered. The reasons for the positive effects of such use of additives in certain engine operating modes are also clarified.


2021 ◽  
Vol 1068 (1) ◽  
pp. 012016
Author(s):  
Hazim Sharudin ◽  
N.A. Rahim ◽  
N.I. Ismail ◽  
Sharzali Che Mat ◽  
Nik Rosli Abdullah ◽  
...  

Author(s):  
P M Bhatt

Increasing industrialization and motorization led to a significant rise in demand of petroleum products. As these are the non-renewable resources, it will be troublesome to predict the availability of these resources in the future, resulting in uncertainty in its supply and price and is impacting growing economies like India importing 80% of the total demand of the petroleum products. Many attempts have been made by different researchers to find out alternate fuels for Internal Combustion engines. Many alternate fuels like Biodiesel, LPG (Liquefied Petroleum Gas), CNG (Compressed Natural Gas) and Alcohol are being used nowadays by different vehicles. In this context pyrolysis of scrap tyres can be used effectively to produce oil, thereby solving the problem of waste tyre disposal. In the present study, Experimental investigations were carried out to evaluate the performance and emission characteristics of a single cylinder diesel engine fueled by TPO10, TPO15, and TPO20 at a crank angle 280 before TDC (Top Dead Centre) and injection pressure of 180 bar keeping the blend quality by controlling the density and viscosity of tyre pyrolysis oil within permissible limit of euro IV diesel requirement. The performance and emission results were analyzed and compared with that of diesel fuel operation. The results of investigations indicate that the brake thermal efficiency of the TPO - DF blend decreases by 4 to 8%. CO emissions are slightly higher but within permissible limit of euro IV emission standards. HC emissions are higher by about 40 to 60% at partial load whereas smoke opacity is lower by about 14% to 22% as compared to diesel fuel.


2017 ◽  
Vol 2 (3) ◽  
pp. 15-19
Author(s):  
Александр Уханов ◽  
Aleksandr Ukhanov ◽  
Денис Уханов ◽  
Denis Ukhanov ◽  
Евгений Сидоров ◽  
...  

The mode of independent idling, characterized by an impaired process flow, unproductive fuel consumption and increased emissions of harmful substances into the atmosphere, is the most unfavorable mode of the diesel engine operation. Therefore, the aim of the research is to reveal the peculiarities of the tractor diesel engine operation by the camelina-mineral fuel in the mode of independent idling. Camelina-mineral fuel is a mixture of camelina oil and mineral diesel fuel in certain ratio of these components. To assess the possibility of using the camelina oil as biological component of diesel mixed fuel, an experimental study of the D-243 diesel engine in idling mode was carried out, and the degree of influence of the different ratio of the components of the mixed fuel on its parameters was determined. The researches were carried out with the diesel fuel on the L-0.2-62 mineral fuel and the camelina-mineral fuel with a ratio of the biological and mineral components: 25% RyzhM + 75% DT; 50% RyzhM + 50% DT; 75% RyzhM + 25% DT; 90% RyzhM + 10% DT and 90% RyzhM + 10% DT (US). For the parameters of the diesel, the excess air factor, the filling ratio of the diesel cylinder with fresh charge, the maximum cycle pressure, the hourly fuel consumption, smoke and carbon monoxide content in the exhaust gases are taken. It is established that when the diesel engine works on camelina-mineral fuel mode the minimum sustainable speed of the crankshaft idle speed 800 min-1 the values of maximum cycle pressure (6.3 MPa) and the filling ratio of the cylinders of a diesel engine the fresh charge (0,87) remain unchanged. The coefficient of excess air, increasing in mixed fuel shares of camelina oil to 90%, reduced from 7.187 to 4.619, while fuel consumption increases of 1.1 kg/h 2 kg/h. The best environmental indicators are observed when working on red-and-mineral fuel 50% RyzhM + 50% DT. Handling mixed fuel with ultrasound reduces fuel consumption, smoke and content of carbon oxide in the exhaust gas relative to the mixed fuel not treated with ultrasound.


Sign in / Sign up

Export Citation Format

Share Document