Method for forecasting residual life of catenary poles

2021 ◽  
pp. 93-98
Author(s):  
Valeriy Nikolaevich Li ◽  
◽  
Lyudmila Sergeevna Demina ◽  
Sergey Anatolyevich Vlasenko ◽  
◽  
...  

The paper proposes a method for forecasting residual life of reinforced concrete catenary poles based on the calculation of fatigue characteristics in SolidWorks Simulation software environment. With the consideration for additional factors of crack formation the authors have gained the fatigue (life) curve of the catenary pole and have determined positions and elements that are the most susceptible to fatigue effect. On the basis of the data gained the authors have developed a method for determining a residual bearing capacity by a special nomogram. As a result, the authors have formed an order of carrying out monitoring of reinforced concrete catenary poles.

2019 ◽  
Vol 968 ◽  
pp. 248-257
Author(s):  
Svetlana Romanenko ◽  
Yanina Andriievska

The main task of construction is providing buildings with the property to remain operable throughout the entire life cycle. The level of bearing capacity, both of individual structures and buildings as a whole, depends on many factors.


2018 ◽  
Vol 10 (1) ◽  
pp. 18-26 ◽  
Author(s):  
Chittaranjan Birabar NAYAK ◽  
Nivedita Sunil THROAT ◽  
Sunil Bhimrao THAKARE

Damage to the reinforced concrete structure is mainly occurring because of two reasons either due to end of service life or due to load exceeds beyond structural capacity. Along with these two reasons degradation of material property is the one more major factor which causes the risk of failure. A concrete structure constructed in an aqueous environment get exposed to the corrosion process. Consequently, this causes the generation of crack, fragilization, a decrease of bond strength between reinforcement and concrete. All these factors affection static and dynamic behavior of concrete structure reducing the service life of an affected area. Whereas service life carries the major role in the economy of a concrete structure that is why various methods have been developed in the second half of the 20th century to find out the residual life of the structure. In this proposed work, a non-destructive technique is used to predict the residual life of reinforced concrete beams having different cracking levels, as results of steel reinforcement corrosion, considering the variation produced in the dynamic behavior, through the variation of the first natural vibration frequency. Whereas to accelerate the corrosion process, impress current technique is used in which a current is externally applied to induce corrosion in reinforcement and then crack widths and vibration natural frequencies were measured. A numerical model is proposed with the help of FEM based Auto desk Algor simulation software to predict attack penetration depth. At the end, the paper is concluded by giving an effect of “water to cement ratio” and “cover to diameter ratio” on the initiation and propagation of corrosion and residual life of corroded beam specimen is graphically represented.


Author(s):  
Л. Р. Маилян ◽  
С. А. Стельмах ◽  
Е. М. Щербань ◽  
М. П. Нажуев

Состояние проблемы. Железобетонные элементы изготавливаются, как правило, по трем основным технологиям - вибрированием, центрифугированием и виброцентрифугированием. Однако все основные расчетные зависимости для определения их несущей способности выведены, исходя из основного постулата - постоянства и равенства характеристик бетона по сечению, что реализуется лишь в вибрированных колоннах. Результаты. В рамках диаграммного подхода предложены итерационный, приближенный и упрощенный способы расчета несущей способности железобетонных вибрированных, центрифугированных и виброцентрифугированных колонн. Выводы. Расчет по диаграммному подходу показал существенно более подходящую сходимость с опытными данными, чем расчет по методике норм, а также дал лучшие результаты при использовании дифференциальных характеристик бетона, чем при использовании интегральных и, тем более, нормативных характеристик бетона. Statement of the problem. Reinforced concrete elements are typically manufactured according to three basic technologies - vibration, centrifugation and vibrocentrifugation. However, all the basic calculated dependencies for determining their bearing capacity were derived using the main postulate, i.e., the constancy and equality of the characteristics of concrete over the cross section, which is implemented only in vibrated columns. Results. Within the framework of the diagrammatic approach, iterative, approximate and simplified methods of calculating the bearing capacity of reinforced concrete vibrated, centrifuged and vibrocentrifuged columns are proposed. Conclusions. The calculation according to the diagrammatic approach showed a significantly better convergence with the experimental data than that using the method of norms, and also performs better when using differential characteristics of concrete than when employing integral and particularly standard characteristics of concrete.


2012 ◽  
Vol 455-456 ◽  
pp. 1079-1083
Author(s):  
Wei Jun Yang ◽  
Hong Jia Huang ◽  
Wen Yu Jiang ◽  
Yi Bin Peng

Shantou atmospheric salt-fog environment is simulated with the comprehensive salt spray test chamber. By using reinforced concrete short beams under different water-cement radio, different corrosion time, the inclined section degradation rules of the corrosive reinforced concrete members are researched for establishing shear capacity of short beam formulas in salt-fog environment.


2021 ◽  
Vol 13 (14) ◽  
pp. 7989
Author(s):  
Miriam Pekarcikova ◽  
Peter Trebuna ◽  
Marek Kliment ◽  
Michal Dic

The presented article deals with the issue of solving bottlenecks in the logistics flow of a manufacturing company. The Tx Plant Simulation software tool is used to detect bottlenecks and deficiencies in the company’s production, logistics and transportation systems. Together with the use of simulation methods and lean manufacturing tools, losses in business processes are eliminated and consequently flow throughput is improved. In the TX Plant Simulation software environment, using Bottleneck analyzer, bottlenecks were defined on the created simulation model and a method of optimizing logistics flows was designed and tested by introducing the Kanban pull system. This resulted in an improvement and throughput of the entire logistics flow, a reduction in inter-operational stocks and an increase in the efficiency of the production system as a whole.


Author(s):  
Eric Liese

A dynamic process model of a steam turbine, including partial arc admission operation, is presented. Models were made for the first stage and last stage, with the middle stages presently assumed to have a constant pressure ratio and efficiency. A condenser model is also presented. The paper discusses the function and importance of the steam turbines entrance design and the first stage. The results for steam turbines with a partial arc entrance are shown, and compare well with experimental data available in the literature, in particular, the “valve loop” behavior as the steam flow rate is reduced. This is important to model correctly since it significantly influences the downstream state variables of the steam, and thus the characteristic of the entire steam turbine, e.g., state conditions at extractions, overall turbine flow, and condenser behavior. The importance of the last stage (the stage just upstream of the condenser) in determining the overall flowrate and exhaust conditions to the condenser is described and shown via results.


2011 ◽  
Vol 243-249 ◽  
pp. 929-933
Author(s):  
Na Ha ◽  
Lian Guang Wang ◽  
Shen Yuan Fu

In order to improve the bearing capacity of SRC which is related with deformation and stiffiness, SRC beams should be strengthened by CFRP. Based on the experiment of six pre-splitting steel reinforced concrete beams strengthened with (Prestressed) CFRP sheets, the deformation of beams are discussed. Load-deformation curves are obtained by the experiment. Considering the influence of intial bending moment on SRC beams, the calculated deformation formulas of SRC beams strengthened by (Prestressed) CFRP are deduced. The results showed that the load-deformation curves of normal and strengthened beams respectively showed three and two linear characteristics. The theoretical results which calculated by the formulas of deformation are well agreement with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document