scholarly journals CD32-RNA Co-localizes with HIV-RNA in CD3+ Cells Found within Gut Tissues from Viremic and ART-Suppressed Individuals

2019 ◽  
Vol 4 (1) ◽  
pp. 147 ◽  
Author(s):  
Joshua Jorge Vasquez ◽  
Brandon L. Aguilar-Rodriguez ◽  
Leonardo Rodriguez ◽  
Louise E. Hogan ◽  
Ma Somsouk ◽  
...  

Background: Identifying biomarkers for cells harboring replication-competent HIV is a major research priority. Recently, there have been mixed reports addressing the possibility that CD32-expressing T-cells are enriched for HIV. There is growing evidence that CD32 expression increases with cellular activation that may be related to, but not necessarily specific for, infection with HIV.  However, the relationship of CD32 expression to HIV-infection in subtypes of tissue-resident leukocytes is unclear.  Methods: First, we used duplex chromogenic in situ hybridization to identify cells actively transcribing RNA for both CD32 and HIV on human gut tissues. Then we performed multiplexed immunofluorescence and in situ hybridization (mIFISH) on sections from the same tissues to determine the phenotype of individual cells co-expressing HIV-RNA and CD32-RNA.  Results: HIV-RNA+ cells were more abundant in tissues from viremic individuals compared to those on suppressive anti-retroviral therapy (ART). However, staining by both methods indicated that a higher proportion of HIV-RNA+ cells co-expressed CD32-RNA in ART-suppressed compared to viremic individuals. The majority of HIV-RNA+ cells were CD3+.Conclusions: Our data suggest that the transcription of CD32-RNA is correlated with HIV transcriptional activity in CD3+ cells found within human gut tissue. Whether or not up-regulation of CD32-RNA is a direct result of HIV reactivation or more global T cell activation remains unclear.

2014 ◽  
Vol 194 (2) ◽  
pp. 836-841 ◽  
Author(s):  
Yuri Bushkin ◽  
Felix Radford ◽  
Richard Pine ◽  
Alfred Lardizabal ◽  
Bonita T. Mangura ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 66-66
Author(s):  
Alwi Shatry ◽  
Michael A Gorin ◽  
Jackelin G Chirinos ◽  
Robert B. Levy

Abstract Abstract 66 We recently demonstrated that administration of IL-2 complexed to the anti IL-2 antibody JES6-A12 (IAC) induced stable chimerism and engraftment of donor HSCT (BBMT 15:785, 2009). Based on suppression of anti-donor MiHA-specific host T cells, it was concluded that IAC administration enhanced chimerism by suppression of HVG. We proposed that in situ manipulation of host Tregs was crucial to facilitating engraftment and establishing tolerance in this model and hypothesized that the enhanced chimerism induced by this strategy was a direct result of host Treg activation, expansion and function following engagement of the IL-2 receptor CD25. To directly test this hypothesis, B6 CD4−/− (H-2b, Ly9.1−) mice were infused with highly enriched CD4 cells from B6-WT or B6-IL-2Rβ−/− mice deficient in CD25 expression and 4 days later conditioned with 5.5 Gy TBI. One day later, these mice were transplanted with MHC-matched, MiHA-mismatched 4 × 106 BALB.B (H-2b, Ly9.1+) TCD-BM. At days +3 and +5, all recipients were administered IAC and subsequently assessed for peripheral donor chimerism. By 2 weeks post-HCT, untreated control mice had increased circulating levels of CD8TETRAMER+ T cells (representing specific host anti-donor H60 MiHA reactive T cells) vs. IAC-treated recipients. Three months post-HCT, CD4−/− recipients of WT but not IL-2Rβ−/− CD4 cells were chimeric as evidenced by high levels of circulating donor cells (60% vs. <1%). These findings demonstrate that IAC effects require host CD25+ Treg cells and we propose that facilitation of engraftment by this strategy was a direct result of Treg cell activation and expansion following engagement of IAC with CD25. To assess Treg activation, we examined these cells in our standard BALB.B à B6 HSCT model. Tregs isolated 7 days post-HCT from IAC-treated but not untreated recipients expressed readily demonstrable levels of pStat-5a expression (∼2X increase in IAC-treated vs. PBS controls). Moreover, culture of the former Tregs in the presence of rmIL-2 illustrated their heightened sensitivity to activation by this cytokine as virtually all Tregs from IAC-treated animals exhibited high levels of pStat-5a expression (3.2 × 106 FoxP3+ P-Stat5a+ cells ± SE 0.6) compared to control mice (0.4 × 106 FoxP3+ P-Stat5a+ cells ± SE 0.5). Following this activation, increased numbers of host CD4+ FoxP3+ Tregs were readily identified in the PB and spleen of IAC vs. PBS-treated recipients. We next directly examined functional capacity of residual host Tregs exposed to IAC post-5.5Gy TBI and-transplant. Eight days post-HSCT, host Tregs (0 – 25 × 103/well) were isolated and highly enriched populations assessed for suppression of TCONV in anti-CD3 activation assays. Tregs from IAC-treated recipients efficiently mediated suppression at least equivalent to that by normal, untreated Tregs in these assays. Additionally, these IAC treated residual B6 Tregs also effectively inhibited allogeneic MLR responses by B6 CD4+ CD25− responder cells. Therefore, the capacity of host Tregs to respond to IAC activation signals and suppress T cell activation remained intact following conditioning and HSCT. We conclude that host Treg cell activation/expansion is central to the suppression of host effector cell responses to donor hematopoietic antigens leading to the inhibition of HVG following IAC administration resulting in enhanced engraftment. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 117 (51) ◽  
pp. 32566-32573
Author(s):  
Livia R. Goes ◽  
Alia Sajani ◽  
Aida Sivro ◽  
Ronke Olowojesiku ◽  
Jocelyn C. Ray ◽  
...  

Acute HIV infection is characterized by rapid viral seeding of immunologic inductive sites in the gut followed by the severe depletion of gut CD4+T cells. Trafficking of α4β7-expressing lymphocytes to the gut is mediated by MAdCAM, the natural ligand of α4β7that is expressed on gut endothelial cells. MAdCAM signaling through α4β7costimulates CD4+T cells and promotes HIV replication. Similar to MAdCAM, the V2 domain of the gp120 HIV envelope protein binds to α4β7. In this study, we report that gp120 V2 shares with MAdCAM the capacity to signal through α4β7resulting in CD4+T cell activation and proliferation. As with MAdCAM-mediated costimulation, cellular activation induced by gp120 V2 is inhibited by anti-α4β7monoclonal antibodies (mAbs). It is also inhibited by anti-V2 domain antibodies including nonneutralizing mAbs that recognize an epitope in V2 that has been linked to reduced risk of acquisition in the RV144 vaccine trial. The capacity of the V2 domain of gp120 to mediate signaling through α4β7likely impacts early events in HIV infection. The capacity of nonneutralizing V2 antibodies to block this activity reveals a previously unrecognized mechanism whereby such antibodies might impact HIV transmission and pathogenesis.


2019 ◽  
Vol 70 (8) ◽  
pp. 1636-1642 ◽  
Author(s):  
Jonathan Z Li ◽  
Florencia P Segal ◽  
Ronald J Bosch ◽  
Christina M Lalama ◽  
Carla Roberts-Toler ◽  
...  

Abstract Background Despite low plasma human immunodeficiency virus (HIV) RNA, HIV controllers have evidence of viral replication and elevated inflammation. We assessed the effect of antiretroviral therapy (ART) on HIV suppression, immune activation, and quality of life (QoL). Methods A5308 was a prospective, open-label study of rilpivirine/emtricitabine/tenofovir disoproxil fumarate in ART-naive HIV controllers (N = 35), defined as having HIV RNA &lt;500 copies/mL for ≥12 months. The primary outcome measured change in %CD38+HLA-DR+ CD8+ T cells. Residual plasma viremia was measured using the integrase single-copy assay. QoL was measured using the EQ-5D questionnaire. Outcomes were evaluated using repeated measures general estimating equations models. Results Before ART, HIV controllers with undetectable residual viremia &lt;0.6 HIV-1 RNA copies/mL had higher CD4+ counts and lower levels of T-cell activation than those with detectable residual viremia. ART use was effective in further increasing the proportion of individuals with undetectable residual viremia (pre-ART vs after 24–48 weeks of ART: 19% vs 94%, P &lt; .001). Significant declines were observed in the %CD38+HLA-DR+CD8+ T cells at 24–48 (−4.0%, P = .001) and 72–96 (−7.2%, P &lt; .001) weeks after ART initiation. ART use resulted in decreases of several cellular markers of immune exhaustion and in a modest but significant improvement in self-reported QoL. There were no significant changes in CD4+ counts or HIV DNA. Conclusions ART in HIV controllers reduces T-cell activation and improves markers of immune exhaustion. These results support the possible clinical benefits of ART in this population.


2014 ◽  
Vol 88 (14) ◽  
pp. 7818-7827 ◽  
Author(s):  
Sara Gianella ◽  
Marta Massanella ◽  
Douglas D. Richman ◽  
Susan J. Little ◽  
Celsa A. Spina ◽  
...  

ABSTRACTAsymptomatic cytomegalovirus (CMV) replication occurs frequently in the genital tract in untreated HIV-infected men and is associated with increased immune activation and HIV disease progression. To determine the connections between CMV-associated immune activation and the size of the viral reservoir, we evaluated the interactions between (i) asymptomatic seminal CMV replication, (ii) levels of T cell activation and proliferation in blood, and (iii) the size and transcriptional activity of the HIV DNA reservoir in blood from 53 HIV-infected men on long-term antiretroviral therapy (ART) with suppressed HIV RNA in blood plasma. We found that asymptomatic CMV shedding in semen was associated with significantly higher levels of proliferating and activated CD4+T cells in blood (P< 0.01). Subjects with detectable CMV in semen had approximately five times higher average levels of HIV DNA in blood CD4+T cells than subjects with no CMV. There was also a trend for CMV shedders to have increased cellular (multiply spliced) HIV RNA transcription (P= 0.068) compared to participants without CMV, but it is unclear if this transcription pattern is associated with residual HIV replication. In multivariate analysis, the presence of seminal plasma CMV (P= 0.04), detectable 2-long terminal repeat (2-LTR), and lower nadir CD4+(P< 0.01) were independent predictors of higher levels of proviral HIV DNA in blood. Interventions aimed at reducing seminal CMV and associated immune activation may be important for HIV curative strategies. Future studies of anti-CMV therapeutics will help to establish causality and determine the mechanisms underlying these described associations.IMPORTANCEAlmost all individuals infected with HIV are also infected with cytomegalovirus (CMV), and the replication dynamics of the two viruses likely influence each other. This study investigated interactions between asymptomatic CMV replication within the male genital tract, levels of inflammation in blood, and the size of the HIV DNA reservoir in 53 HIV-infected men on long-term antiretroviral therapy (ART) with suppressed HIV RNA in blood plasma. In support of our primary hypothesis, shedding of CMV DNA in semen was associated with increased activation and proliferation of T cells in blood and also significantly higher levels of HIV DNA in blood cells. These results suggest that CMV reactivation might play a role in the maintenance of the HIV DNA reservoir during suppressive ART and that it could be a target of pharmacologic intervention in future studies.


Sign in / Sign up

Export Citation Format

Share Document