scholarly journals Novel Biomarkers for Early Diagnosis and Progression of Diabetic Nephropathy

2019 ◽  
Vol 22 (07) ◽  
pp. 28-33
Author(s):  
Rawaa Behlul Al-Fatlawi ◽  
Kifah Jabbar Al-Yaqoobi ◽  
Ameera A Alsadawi ◽  
Najah R. Hadi ◽  
Kareem Ghaly ◽  
...  

2019 ◽  
Vol 20 (11) ◽  
pp. 1129-1140 ◽  
Author(s):  
Seyed Mostafa Parizadeh ◽  
Reza Jafarzadeh-Esfehani ◽  
Maryam Ghandehari ◽  
Fatemeh Goldani ◽  
Seyed Mohammad Reza Parizadeh ◽  
...  

Hepatocellular carcinoma (HCC) is a common cancer, and the second most common cause of cancer-associated death globally. One of the major reasons for this high rate of mortality is a failure to make an early diagnosis. The average survival in untreated HCC patients is estimated to be approximately three months. The 5-year overall survival rate after radical resection is about 15-40% and within two years, more than two third of patients experience a relapse. To date, the most common biomarker which has been used for the diagnosis of HCC is serum alpha-fetoprotein (AFP). However, there is a lack of sensitive and specific tumor biomarkers for the early diagnosis of HCC. MicroRNAs are a class of short endogenous RNA with crucial role in many biological activities and cellular pathways and can be found in various tissues and body fluids. The aim of this review was to summarize the results of recent studies investigating miRNAs as novel biomarkers for the early diagnosis and prognostic risk stratification of patients with this type of liver cancer.


2017 ◽  
Vol 13 (6) ◽  
Author(s):  
Lalit Kishore ◽  
Navpreet Kaur ◽  
Randhir Singh

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Mostafa Abdelsalam ◽  
A. M. Wahab ◽  
Maysaa El Sayed Zaki ◽  
Mohamad Motawea

Background. Diabetes mellitus is the leading cause of end-stage renal disease worldwide. Microalbuminuria is the cornerstone for the diagnosis of diabetic nephropathy. However, it is an inadequate marker for early diagnosis. MicroRNAs are not only new and promising markers for early diagnosis but also, but they may also play a role in the prevention of disease progression. Methods. This study included ninety patients with type 2 DM in addition to 30 control subjects. MicroRNA-451 expression in blood and plasma using real-time PCR was evaluated in addition to the classic diabetic nephropathy markers (serum creatinine, urinary albumin, and eGFR). Results. There was a significant difference between the studied groups versus control regarding serum creatinine, eGFR, urinary, and plasma microRNA-451 with p=0.0001. Patients with eGFR 60 ml/min/1.73 m2 showed a significantly higher plasma microRNA-451 (29.6 ± 1.6) and significantly lower urinary microRNA-451 (21 ± 0.9) in comparison to patients with eGFR >60 ml/min/1.73 m2 and p=0.0001. eGFR showed a positive correlation with urinary microRNA-451 and negative correlation with both plasma microRNA-451 and urinary albumin. Both plasma and urinary microRNA-451 are highly sensitive and specific markers for chronicity in diabetic nephropathy patients with sensitivity of 90.9% and 95.5% and specificity of 67.6% and 95.6%, respectively. Conclusion. MicroRNA-451 is a promising early biomarker for chronic kidney disease in diabetic nephropathy with high sensitivity and specificity.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Bojun Xu ◽  
Lei Wang ◽  
Huakui Zhan ◽  
Liangbin Zhao ◽  
Yuehan Wang ◽  
...  

Objectives. Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD) throughout the world, and the identification of novel biomarkers via bioinformatics analysis could provide research foundation for future experimental verification and large-group cohort in DN models and patients. Methods. GSE30528, GSE47183, and GSE104948 were downloaded from Gene Expression Omnibus (GEO) database to find differentially expressed genes (DEGs). The difference of gene expression between normal renal tissues and DN renal tissues was firstly screened by GEO2R. Then, the protein-protein interactions (PPIs) of DEGs were performed by STRING database, the result was integrated and visualized via applying Cytoscape software, and the hub genes in this PPI network were selected by MCODE and topological analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out to determine the molecular mechanisms of DEGs involved in the progression of DN. Finally, the Nephroseq v5 online platform was used to explore the correlation between hub genes and clinical features of DN. Results. There were 64 DEGs, and 32 hub genes were identified, enriched pathways of hub genes involved in several functions and expression pathways, such as complement binding, extracellular matrix structural constituent, complement cascade related pathways, and ECM proteoglycans. The correlation analysis and subgroup analysis of 7 complement cascade-related hub genes and the clinical characteristics of DN showed that C1QA, C1QB, C3, CFB, ITGB2, VSIG4, and CLU may participate in the development of DN. Conclusions. We confirmed that the complement cascade-related hub genes may be the novel biomarkers for DN early diagnosis and targeted treatment.


2019 ◽  
Vol 20 (1) ◽  
pp. 159 ◽  
Author(s):  
Radzisław Mierzyński ◽  
Elżbieta Poniedziałek-Czajkowska ◽  
Dominik Dłuski ◽  
Jolanta Patro-Małysza ◽  
Żaneta Kimber-Trojnar ◽  
...  

Gestational diabetes mellitus (GDM) is considered to be one of the most frequent medical complication observed among pregnant women. The role of adipokines in the pathogenesis of GDM remains strictly unknown. Different adipokines have been studied throughout gestation, and they have been proposed as biomarkers of GDM and other pregnancy-related complications; however, there is no biomarker reported for GDM screening at present. The aim of this study was to evaluate serum nesfatin-1 and vaspin levels in GDM and non-GDM women, to characterize the correlation between these adipokines, and to assess the potential role of circulating adipokines in the prediction of risk of gestational diabetes mellitus. Serum concentrations of nesfatin-1 and vaspin were measured in 153 women with GDM, and in 84 patients with uncomplicated pregnancy by enzyme-linked immunosorbent assay (ELISA) kits, according to the manufacturer’s instructions. Circulating levels of nesfatin-1 and vaspin were significantly lower in the GDM group than in the control group. Nesfatin-1 levels were negatively correlated with vaspin levels. The results of this study point out the possible role of nesfatin-1 and vaspin as potential novel biomarkers for the prediction and early diagnosis of GDM. Further studies are necessary to evaluate the influence of nesfatin-1 and vaspin on glucose metabolism in the early stages of GDM.


2009 ◽  
Vol 28 (3) ◽  
pp. 165-174 ◽  
Author(s):  
Sachin S. Soni ◽  
Claudio Ronco ◽  
Nevin Katz ◽  
Dinna N. Cruz

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Bancha Satirapoj

Patients with diabetic nephropathy have a higher risk of mortality, mostly from cardiovascular complications. Standard biomarkers including serum creatinine, estimated glomerular filtration rate, and albuminuria are imprecise, do not directly measure renal tissue injury, and are relatively insensitive to small changes in renal function. Thus, availability of novel biomarkers that are sensitive, specific, and precise as well as able to detect kidney injury and predict clinically significant outcomes would be widely useful in diabetic nephropathy. Novel biomarkers of the processes that induce tubulointerstitial changes may ultimately prove to better predict renal progression and prognosis in type 2 diabetes. Recently, certain biomarkers, which were initially identified in acute kidney injury, also have been reported to confer value in evaluating patients with chronic kidney disease. Biomarkers such as cystatin C, kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), angiotensinogen, periostin, and monocyte chemoattractant protein-1 (MCP-1) reflect tubular injury. In this article, we focused on the potential applications of these biomarkers in diabetic nephropathy.


Sign in / Sign up

Export Citation Format

Share Document