Mobility of Mobile Station in Voice Priority Queue Scheduler for VoIPWLANs

2011 ◽  
Vol 2 (3) ◽  
pp. 28
Author(s):  
Kashif Nisar ◽  
Suhaidi Hassan

Voice over Internet Protocol (VoIP) is growing rapidly during this decade. VoIP is seen as a short-term and long-trem transmission for voice and audio traffic. Meanwhile, VoIP is moving on Wireless Local Area Networks (WLANs) based on IEEE 802.11 standards. Currently, many packet scheduling algorithms like Weighted Fair Queuing (WFQ), was mainly designed to provide the bandwidth reservation. The Strict Priority (SP) is low-cost to maintain the delay sensitive voice traffic. Also, a number of research scheduling solutions have been proposed like General processor sharing (GPS), Deficit Round Robin (DRR), Contention-Aware Temporally fair Scheduling (CATS). Unfortunately, the current scheduling will not be able to handle the VoIP packets with the proper manner and they have some drawbacks over real-time applications. The objective of this research is to propose a new Voice Priority Queue (VPQ) packet scheduling and algorithm to ensure more throughput, fairness and efficient packet scheduling for VoIP performance of queues and traffics. A new scheduler flexible which is capable of satisfying the VoIP traffic flows. Experimental topologies on NS-2 network simulator were analyzed for voice traffic. Preliminary results show that this can achieve maximum and more accurate VoIP quality throughput and fairness index in mobility of mobile station. We verified and validated VPQ an extensive experimental simulation study under various traffic flows over WLANs.

Author(s):  
Kashif Nisar

Voice over Internet Protocol (VoIP) is growing rapidly during this decade. VoIP is seen as a short-term and long-term transmission for voice and audio traffic and is moving on Wireless Local Area Networks (WLANs) based on IEEE 802.11 standards. Currently, packet scheduling algorithms like Weighted Fair Queuing (WFQ), was mainly designed to provide the bandwidth reservation. The Strict Priority (SP) is low-cost to maintain the delay sensitive voice traffic. Also, a number of research scheduling solutions have been proposed like General processor sharing (GPS), Deficit Round Robin (DRR), Contention-Aware Temporally fair Scheduling (CATS). Unfortunately, the current scheduling won’t be able to handle the VoIP packets properly and they have drawbacks over real-time applications. The objective of this research is to propose a Fourth Stage of Voice Priority Queue (VPQ) packet scheduling and algorithm to ensure more throughput, fairness and efficient packet scheduling for VoIP performance of queues and traffics. A new scheduler flexible which is capable of satisfying the VoIP traffic flows. Experimental topologies on NS-2 network simulator were analyzed for voice traffic.


Author(s):  
Kashif Nisar ◽  
Angela Amphawan ◽  
Suhaidi B. Hassan

Voice over Internet Protocol (VoIP) has grown quickly in the world of telecommunication. Wireless Local Area Networks (WLANs) are the most performance assuring technology for wireless networks, and WLANs have facilitated high-rate voice services at low cost and good flexibility. In a voice conversation, each client works as a sender or a receiver depending on the direction of traffic flow over the network. A VoIP application requires high throughput, low packet loss, and a high fairness index over the network. The packets of VoIP streaming may experience drops because of the competition among the different kinds of traffic flow over the network. A VoIP application is also sensitive to delay and requires the voice packets to arrive on time from the sender to the receiver side without any delay over WLAN. The scheduling system model for VoIP traffic is an unresolved problem. The objectives of this paper are to identify scheduler issues. This comprehensive structure of Novel Voice Priority Queue (VPQ) scheduling system model for VoIP over WLAN discusses the essential background of the VPQ schedulers and algorithms. This paper also identifies the importance of the scheduling techniques over WLANs.


Author(s):  
Kashif Nisar ◽  
Angela Amphawan ◽  
Suhaidi B. Hassan

Voice over Internet Protocol (VoIP) has grown quickly in the world of telecommunication. Wireless Local Area Networks (WLANs) are the most performance assuring technology for wireless networks, and WLANs have facilitated high-rate voice services at low cost and good flexibility. In a voice conversation, each client works as a sender or a receiver depending on the direction of traffic flow over the network. A VoIP application requires high throughput, low packet loss, and a high fairness index over the network. The packets of VoIP streaming may experience drops because of the competition among the different kinds of traffic flow over the network. A VoIP application is also sensitive to delay and requires the voice packets to arrive on time from the sender to the receiver side without any delay over WLAN. The scheduling system model for VoIP traffic is an unresolved problem. The objectives of this paper are to identify scheduler issues. This comprehensive structure of Novel Voice Priority Queue (VPQ) scheduling system model for VoIP over WLAN discusses the essential background of the VPQ schedulers and algorithms. This paper also identifies the importance of the scheduling techniques over WLANs.


Author(s):  
Chaithra. H. U ◽  
Vani H.R

Now a days in Wireless Local Area Networks (WLANs) used in different fields because its well-suited simulator and higher flexibility. The concept of WLAN  with  advanced 5th Generation technologies, related to a Internet-of-Thing (IOT). In this project, representing the Network Simulator (NS-2) used linked-level simulators for Wireless Local Area Networks and still utilized IEEE 802.11g/n/ac with advanced IEEE 802.11ah/af technology. Realization of the whole Wireless Local Area Networking linked-level simulators inspired by the recognized Vienna Long Term Evolution- simulators. As a outcome, this is achieved to link together that simulator to detailed performances of Wireless Local Area Networking with Long Term Evolution, operated in the similar RF bands. From the advanced 5th Generation support cellular networking, such explore is main because different coexistences scenario can arise linking wireless communicating system to the ISM and UHF bands.


Author(s):  
Mohd Ahamad

A new concept in power generation is a microgrid. The Microgrid concept assumes a cluster of loads and microsources operating as a single controllable system that provides power to its local area. This concept provides a new paradigm for defining the operation of distributed generation. The microsources of special interest for MGs are small (<100-kW) units with power electronic interfaces. These sources are placed at customers sites. They are low cost, low voltage and have a high reliability with few emissions. Power electronics provide the control and flexibility required by the MG concept. A properly designed power electronics and controllers insure that the MG can meet the needs of its customers as well as the utilities. The goal of this project is to build a complete model of Microgrid including the power sources, their power electronics, and a load and mains model in THE HOMER. The HOMER Micropower Optimization Model is a computer model developed by the U.S. National Renewable Energy Laboratory (NREL) to assist in the design of micropower systems and to facilitate the comparison of power generation technologies across a wide range of applications. HOMER models a power system’s physical behavior and its life-cycle cost, which is the total cost of installing and operating the system over its life span. HOMER allows the modeler to compare many different design options based on their technical and economic merits. It also assists in understanding and quantifying the effects of uncertainty or changes in the inputs.


Author(s):  
James M. McKinion

Precision agriculture has been made possible by the confluence of several technologies: geographic positioning systems, geographic information systems, image analysis software, low-cost microcomputerbased variable rate controller/recorders, and precision tractor guidance systems. While these technologies have made precision agriculture possible, there are still major obstacles which must be overcome to make this new technology accepted and usable. Most growers will not do image processing and development of prescription maps themselves but will rely upon commercial sources. There still remains the challenge of storage and retrieval of multi-megabytes of data files for each field, and this problem will only continue to grow year by year. This chapter will discuss the various wireless technologies which are currently being used on three proof-of-concept farms or areas in Mississippi, the various data/ information intensive precision agriculture applications which use wireless local area networking and Internet access, and the next generation technologies which can immensely propel precision agriculture to widespread use in all of agriculture.


Author(s):  
Bryan Houliston ◽  
Nurul Sarkar

Wi-Fi (also known as IEEE 802.11b) networks are gaining widespread popularity as wireless local area networks (WLANs) due to their simplicity in operation, robustness, low cost, and user mobility offered by the technology. It is a viable technology for wireless local area networking applications in both business and home environments. This chapter reports on a survey of large New Zealand organizations focusing on the level of Wi-Fi deployment, reasons for non-deployment, the scope of deployment, investment in deployment, problems encountered, and future plans. Our findings show that most organizations have at least considered the technology, though a much smaller proportion has deployed it on any significant scale. A follow up review of the latest published case studies and surveys suggests that while Wi-Fi networks are consolidating, interest is growing in wider area wireless networks.


SIMULATION ◽  
2020 ◽  
Vol 96 (12) ◽  
pp. 939-956 ◽  
Author(s):  
Anisa Allahdadi ◽  
Ricardo Morla ◽  
Jaime S Cardoso

Despite the growing popularity of 802.11 wireless networks, users often suffer from connectivity problems and performance issues due to unstable radio conditions and dynamic user behavior, among other reasons. Anomaly detection and distinction are in the thick of major challenges that network managers encounter. The difficulty of monitoring broad and complex Wireless Local Area Networks, that often requires heavy instrumentation of the user devices, makes anomaly detection analysis even harder. In this paper we exploit 802.11 access point usage data and propose an anomaly detection technique based on Hidden Markov Model (HMM) and Universal Background Model (UBM) on data that is inexpensive to obtain. We then generate a number of network anomalous scenarios in OMNeT++/INET network simulator and compare the detection outcomes with those in baseline approaches—RawData and Principal Component Analysis. The experimental results show the superiority of HMM and HMM-UBM models in detection precision and sensitivity.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Abhishek Sharma ◽  
Priyanka Chauhan

Abstract Radio over fiber (RoF) technique has revolutionized communication industry with its high data transmission rate and ability to carry the radio signal with speed of light. It finds its application in wireless local area networks (WLANs) due to easy of deployment and low cost. This paper utilizes alternate mark inversion (AMI) technique in wave length division multiplexing (WDM) scheme to further enhance data carrying capacity of the system. It is observed that proposed AMI-WDM scheme is better technique for providing high data rates and is confirmed via SNR, Q factor and eye diagrams.


Sign in / Sign up

Export Citation Format

Share Document