scholarly journals Plastic Litter as Pollutant in the Aquatic Environment: A mini-review

2020 ◽  
Vol 12 (1) ◽  
pp. 167
Author(s):  
Rifka Rimbi Anggraini ◽  
Yenny Risjani ◽  
Uun Yanuhar

HighlightThe issue of plastic litter and microplastics which is currently of special concern in global particularly IndonesiaThe review of size, colour and shape of microplastics that becomes part of the plastic litterThe observed review highlight of plastic litter and microplastics impact on environmental health particularly aquatic biotaAbstractThe negative impact that comes from plastic litter in the aquatic environment is a scourge for the entire world including Indonesia.Plastic litter has a huge influence on the most biota who lives in symbiosis with along the aquatic environment as it is able to sustainability. Moreover, there are other factors that cause the death of aquatic biota. Nowadays, the negative impact of plastic litter occurs on an ongoing basis through the food chain process which until now has not been well studied. Therefore, it is necessary to do further studies on the influence of the food chain as a vector of plastic litter distribution, particularly microplastic on aquatic biota from the first trophic level to high trophic levels. 

2018 ◽  
Vol 96 (1) ◽  
pp. 23-30 ◽  
Author(s):  
Hai-zhen Liu ◽  
Lin Luo ◽  
De-ling Cai

Japanese anchovy (Engraulis japonicus Temminck and Schlegel, 1846) is a keystone species in the food web of the Yellow Sea and East China Sea ecosystem. To study nutrient flow at intermediate and lower trophic levels, a controlled feeding experiment was carried out on a simplified food chain of the green alga Chlorella Beijerinck, 1890 – the calanoid copepod Calanus sinicus Brodsky, 1962 – E. japonicus. For the whole organism, bulk δ13C was found to be enriched with escalating trophic level, although the intertrophic gap in δ13C was slightly lower than the commonly reported 1.5‰ per increase in level. Furthermore, 15 amino acids (AAs) were detected in the studied organisms. Among them, the δ13C values of 12 AAs were determined and were found to exhibit diverse patterns of variation. The δ13C levels of essential AAs changed very little and were highly correlated across trophic levels, indicating that they underwent little trophic fractionation and were mainly ingested by the consumers from the proteins in their food. In contrast, the δ13C values of nonessential AAs differed greatly across trophic levels, indicating that the nonessential AAs in consumers were synthesized de novo from food proteins. The fractionation pattern of nonessential AAs may depend on the carbon pool and the AA composition of the organism at the lower trophic level.


2020 ◽  
Vol 637 ◽  
pp. 225-235 ◽  
Author(s):  
MA Ladds ◽  
MH Pinkerton ◽  
E Jones ◽  
LM Durante ◽  
MR Dunn

Marine food webs are structured, in part, by predator gape size. Species found in deep-sea environments may have evolved such that they can consume prey of a wide range of sizes, to maximise resource intake in a low-productivity ecosystem. Estimates of gape size are central to some types of ecosystem model that determine which prey are available to predators, but cannot always be measured directly. Deep-sea species are hypothesized to have larger gape sizes than shallower-water species relative to their body size and, because of pronounced adaptive foraging behaviour, show only a weak relationship between gape size and trophic level. Here we present new data describing selective morphological measurements and gape sizes of 134 osteichthyan and chondrichthyan species from the deep sea (200-1300 m) off New Zealand. We describe how gape size (height, width and area) varied with factors including fish size, taxonomy (class and order within a class) and trophic level estimated from stable isotopes. For deep-sea species, there was a strong relationship between gape size and fish size, better predicted by body mass than total length, which varied by taxonomic group. Results show that predictions of gape size can be made from commonly measured morphological variables. No relationship between gape size and trophic level was found, likely a reflection of using trophic level estimates from stable isotopes as opposed to the commonly used estimates from FishBase. These results support the hypothesis that deep-sea fish are generalists within their environment, including suspected scavenging, even at the highest trophic levels.


2019 ◽  
Vol 56 (3) ◽  
pp. 484-487 ◽  
Author(s):  
Valentina Constanta Tudor ◽  
Dorina Nicoleta Mocuta ◽  
Ruxandra Florina Teodorescu ◽  
Dragos Ion Smedescu

Soil pollution with plastics represents a great threat to plants, animals, but especially to humans, as a very small quantity of the plastic which is discarded daily is recycled or incinerated in waste facilities, much of it reaching landfills where their decomposition lasts up to 1000 years and during this time the toxic substances penetrate the soil and the water. If, initially, the pollution with plastics has been identified and recognized in the aquatic environment, recent studies show that plastics residues exist in huge quantities in the soil. The present study focuses on the analysis of factors that pollute soil, so the various studies that have been carried out claim that soil pollution with plastic is much higher and increases in an aggressive manner, being estimated to be 4 to 23 times higher than water pollution with plastics, and the accumulation of microplastics in the soil has a negative impact on soil biota. Thus, once the plastic material accumulates in the soil, it is assimilated to organic matter and the mineral substitutes of the soil and persists for several hundred years.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anna Åkesson ◽  
Alva Curtsdotter ◽  
Anna Eklöf ◽  
Bo Ebenman ◽  
Jon Norberg ◽  
...  

AbstractEco-evolutionary dynamics are essential in shaping the biological response of communities to ongoing climate change. Here we develop a spatially explicit eco-evolutionary framework which features more detailed species interactions, integrating evolution and dispersal. We include species interactions within and between trophic levels, and additionally, we incorporate the feature that species’ interspecific competition might change due to increasing temperatures and affect the impact of climate change on ecological communities. Our modeling framework captures previously reported ecological responses to climate change, and also reveals two key results. First, interactions between trophic levels as well as temperature-dependent competition within a trophic level mitigate the negative impact of climate change on biodiversity, emphasizing the importance of understanding biotic interactions in shaping climate change impact. Second, our trait-based perspective reveals a strong positive relationship between the within-community variation in preferred temperatures and the capacity to respond to climate change. Temperature-dependent competition consistently results both in higher trait variation and more responsive communities to altered climatic conditions. Our study demonstrates the importance of species interactions in an eco-evolutionary setting, further expanding our knowledge of the interplay between ecological and evolutionary processes.


1973 ◽  
Vol 30 (2) ◽  
pp. 293-295 ◽  
Author(s):  
P. M. Williams ◽  
H. V. Weiss

Mercury in seawater, in a pelagic food chain, and in bottom sediment was determined at a single station 430 km southeast of San Diego, California. The concentration of mercury in zooplankton slightly increased with depth of collection. The mercury content in almost all of the higher trophic levels of organisms collected at greater depths was indistinguishable from the concentration of mercury in zooplankton at these depths. Mercury concentration in the seawater column was essentially constant below 100 m and significantly higher at the surface. This vertical profile of mercury content is not ascribable to biological activity.


SASI ◽  
2021 ◽  
Vol 27 (3) ◽  
pp. 267
Author(s):  
Hajairin Hajairin ◽  
Gufran Sanusi ◽  
Aman Ma’arij

Material processing by PT Tukad Mas Kota Bima which has a negative impact, namely the existence of pollution or environmental damage in the East Rasa Nae Subdistrict, Bima City, so that it can be held accountable under criminal law, civil law and administrative law. The purpose of this study was to determine the form of criminal liability for environmental damage due to material processing by PT Tukad Mas Kota Bima. The research method used is empirical legal research with data collection techniques through interviews and documentation. The findings of this study indicate that legal liability for environmental damage due to material processing by PT Tukad Mas Kota Bima can be seen in aspects of criminal law, civil law and administrative aspects. However, the Bima City Government through the Environmental Service has only given a written warning to PT Tukad Mas Kota Bima, which has been operating for decades. Whereas empirical facts have shown that there is quite severe damage, such as waste disposal that can have a health impact on the community and natural damage due to excavations carried out. Criminal liability should be a special concern, NGOs and the community even report on environmental crimes, the report is because the result of material processing causes environmental pollution as one of the elements of criminal acts against environmental pollution.


2009 ◽  
Vol 7 (4) ◽  
pp. 751-758 ◽  
Author(s):  
Daniele Kasper ◽  
Elisabete Fernandes Albuquerque Palermo ◽  
Ana Carolina Monteiro Iozzi Dias ◽  
Gustavo Luiz Ferreira ◽  
Rafael Pereira Leitão ◽  
...  

Concentrations of organic (OrgHg) and inorganic mercury (InorgHg) were assessed in different fish tissues (liver, muscle, kidney, gut and gonads) and trophic levels collected in an impacted tropical reservoir in southeastern Brazil. Organic mercury concentrations in muscle were remarkably higher in the carnivorous species Hoplias malabaricus and Oligosarcus hepsetus. The ratios of OrgHg in relation to total mercury (%OrgHg) in muscle also varied according to the species trophic level: 93% for carnivores, 84% for omnivores, 73% for algivores/planktivores and 58% for detritivores. The %OrgHg in the gut tissue of carnivores (78%) was much higher than that found in omnivores (30%), possibly reflecting a process of trophic biomagnification in the reservoir. On the other hand, the InorgHg concentrations in muscle decreased with the trophic level increase, suggesting that this form of mercury did not biomagnify through the food web. Gonads contained the least total mercury, and approximately all of this mercury was represented by the organic form (83 to 98%). The kidney and the liver of all fish species contained less than 50% OrgHg. We suggest that the low %OrgHg in the liver is related to different capacities or strategies of OrgHg detoxification by the fish.


NeoBiota ◽  
2021 ◽  
Vol 66 ◽  
pp. 75-94
Author(s):  
Sergey Golubkov ◽  
Alexei Tiunov ◽  
Mikhail Golubkov

The paucity of data on non-indigenous marine species is a particular challenge for understanding the ecology of invasions and prioritising conservation and research efforts in marine ecosystems. Marenzelleria spp. are amongst the most successful non-native benthic species in the Baltic Sea during recent decades. We used stable isotope analysis (SIA) to test the hypothesis that the dominance of polychaete worm Marenzelleria arctia in the zoobenthos of the Neva Estuary after its invasion in the late 2000s is related to the position of this species in the benthic food webs. The trend towards a gradual decrease in the biomass of Marenzelleria worms was observed during 2014–2020, probably due to significant negative relationships between the biomass of oligochaetes and polychaetes, both of which, according to SIA, primarily use allochthonous organic carbon for their production. The biomass of benthic crustaceans practically did not change and remained very low. The SIA showed that, in contrast to the native crustacean Monoporeia affinis, polychates are practically not consumed either by the main invertebrate predator Saduria entomon, which preys on M. affinis, oligochaetes and larvae of chironomids or by benthivorous fish that prefer native benthic crustaceans. A hypothetical model for the position and functional role of M. arctia in the bottom food web is presented and discussed. According the model, the invasion of M. arctia has created an offshoot food chain in the Estuary food webs. The former dominant food webs, associated with native crustaceans, are now poorly developed. The lack of top-down control obviously contributes to the significant development of the Marenzelleria food chain, which, unlike native food chains, does not provide energy transfer from autochthonous and allochthonous organic matter to the upper trophic levels. The study showed that an alien species, without displacing native species, can significantly change the structure of food webs, creating blind offshoots of the food chain.


Sign in / Sign up

Export Citation Format

Share Document