DEVELOPMENT OF INDUSTRIAL PROCESS OF SAFE WATER DISINFECTION WITH NON-OXIDIZING BIOCIDE

Author(s):  
М. О. Сусь ◽  
Т. Є. Мітченко ◽  
Н. В. Макарова
2021 ◽  
Vol 15 (2) ◽  
pp. 40-55
Author(s):  
C. Albanus ◽  
L. Timmermann ◽  
Volker Schoeffl ◽  
David Hillebrandt ◽  
Jim Milledge ◽  
...  

Safe water is still a major problem for travellers in many countries worldwide. In the last decade several new technical developments were made and more data exist about traditional procedures to produce safe water. This update includes such data with special regard to UV-C and held devices and SODIS.


2000 ◽  
Vol 63 (8) ◽  
pp. 1015-1020 ◽  
Author(s):  
REGINA SOMMER ◽  
MIRANDA LHOTSKY ◽  
THOMAS HAIDER ◽  
ALEXANDER CABAJ

Drinking water, water used in food production and for irrigation, water for fish farming, waste water, surface water, and recreational water have been recently recognized as a vector for the transmission of pathogenic Escherichia coli, especially serotype O157:H7. We investigated the UV (253.7 nm) inactivation behavior and the capability of dark repair (liquid-holding recovery) and photoreactivation of seven pathogenic (including three enterohemorrhagic E. coli) strains and one nonpathogenic strain of E. coli (ATCC 11229) with respect to the use of UV light for water disinfection purposes. Because most bacteria and yeast are known to be able to repair UV damage in their nucleic acids, repair mechanisms have to be considered to ensure safe water disinfection. We found a wide divergence in the UV susceptibility within the strains tested. A 6-log reduction of bacteria that fulfills the requirement for safe water disinfection was reached for the very most susceptible strain O157:H7 (CCUG 29199) at a UV fluence of 12 J/m2, whereas for the most resistant strain, O25:K98:NM, a UV fluence of about 125 J/m2 was needed. Except for one strain (O50:H7) liquid-holding recovery did not play an important role in recovery after UV irradiation. By contrast, all strains, particularly strains O25:K98:NM, O78:K80:H12, and O157:H7 (CCUG 29193), demonstrated photorepair ability. For a 6-log reduction of these strains, a UV fluence (253.7 nm) up to 300 J/m2 is required. The results reveal that the minimum fluence of 400 J/m2 demanded in the Austrian standard for water disinfection is sufficient to inactivate pathogenic E. coli. A fluence of 160 J/m2 (recommendation in Norway) or 250 J/m2 (recommendation in Switzerland) cannot be regarded as safe in that respect.


Author(s):  
C. Claire Thomson

The first book-length study in English of a national corpus of state-sponsored informational film, this book traces how Danish shorts on topics including social welfare, industry, art and architecture were commissioned, funded, produced and reviewed from the inter-war period to the 1960s. For three decades, state-sponsored short filmmaking educated Danish citizens, promoted Denmark to the world, and shaped the careers of renowned directors like Carl Th. Dreyer. Examining the life cycle of a representative selection of films, and discussing their preservation and mediation in the digital age, this book presents a detailed case study of how informational cinema is shaped by, and indeed shapes, its cultural, political and technological contexts.The book combines close textual analysis of a broad range of films with detailed accounts of their commissioning, production, distribution and reception in Denmark and abroad, drawing on Actor-Network Theory to emphasise the role of a wide range of entities in these processes. It considers a broad range of genres and sub-genres, including industrial process films, public information films, art films, the city symphony, the essay film, and many more. It also maps international networks of informational and documentary films in the post-war period, and explores the role of informational film in Danish cultural and political history.


2000 ◽  
Vol 627 ◽  
Author(s):  
Gabriel Popescu ◽  
Aristide Dogariu

ABSTRACTIn many industrial applications involving granular media, knowledge about the structural transformations suffered during the industrial process is desirable. Optical techniques are noninvasive, fast, and versatile tools for monitoring such transformations. We have recently introduced optical path-length spectroscopy as a new technique for random media investigation. The principle of the method is to use a partially coherent source in a Michelson interferometer, where the fields from a reference mirror and the sample are combined to obtain an interference signal. When the system under investigation is a multiple-scattering medium, by tuning the optical length of the reference arm, the optical path-length probability density of light backscattered from the sample is obtained. This distribution carries information about the structural details of the medium. In the present paper, we apply the technique of optical path-length spectroscopy to investigate inhomogeneous distributions of particulate dielectrics such as ceramics and powders. The experiments are performed on suspensions of systems with different solid loads, as well as on powders and suspensions of particles with different sizes. We show that the methodology is highly sensitive to changes in volume concentration and particle size and, therefore, it can be successfully used for real-time monitoring. In addition, the technique is fiber optic-based and has all the advantages associated with the inherent versatility.


Author(s):  
Antonio Dourado ◽  
Paulo Barbeiro ◽  
Edgar Ferreira ◽  
Jorge Henriques ◽  
Maria Antonio ◽  
...  

Author(s):  
A.L. Lukin ◽  
◽  
O.B. Maraeva ◽  
V.A. Kuznetsov ◽  
V.F. Selemenev ◽  
...  

2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Nusa Idaman Said

Water disinfection means the removal, deactivation or killing of pathogenic microorganisms. Microorganisms are destroyed or deactivated, resulting in termination of growth and reproduction. When microorganisms are not removed from drinking water, drinking water usage will cause people to fall ill. Chemical inactivation of microbiological contamination in natural or untreated water is usually one of the final steps to reduce pathogenic microorganisms in drinking water. Combinations of water purification steps (oxidation, coagulation, settling, disinfection, and filtration) cause (drinking) water to be safe after production. As an extra measure many countries apply a second disinfection step at the end of the water purification process, in order to protect the water from microbiological contamination in the water distribution system. Usually one uses a different kind of disinfectant from the one earlier in the process, during this disinfection process. The secondary disinfection makes sure that bacteria will not multiply in the water during distribution. This paper describes several technique of disinfection process for drinking water treatment. Disinfection can be attained by means of physical or chemical disinfectants. The agents also remove organic contaminants from water, which serve as nutrients or shelters for microorganisms. Disinfectants should not only kill microorganisms. Disinfectants must also have a residual effect, which means that they remain active in the water after disinfection. For chemical disinfection of water the following disinfectants can be used such as Chlorine (Cl2),  Hypo chlorite (OCl-), Chloramines, Chlorine dioxide (ClO2), Ozone (O3), Hydrogen peroxide etch. For physical disinfection of water the following disinfectants can be used is Ultraviolet light (UV). Every technique has its specific advantages and and disadvantages its own application area sucs as environmentally friendly, disinfection byproducts, effectivity, investment, operational costs etc. Kata Kunci : Disinfeksi, bakteria, virus, air minum, khlor, hip khlorit, khloramine, khlor dioksida, ozon, UV.


Sign in / Sign up

Export Citation Format

Share Document