UV Inactivation, Liquid-Holding Recovery, and Photoreactivation of Escherichia coli O157 and Other Pathogenic Escherichia coli Strains in Water

2000 ◽  
Vol 63 (8) ◽  
pp. 1015-1020 ◽  
Author(s):  
REGINA SOMMER ◽  
MIRANDA LHOTSKY ◽  
THOMAS HAIDER ◽  
ALEXANDER CABAJ

Drinking water, water used in food production and for irrigation, water for fish farming, waste water, surface water, and recreational water have been recently recognized as a vector for the transmission of pathogenic Escherichia coli, especially serotype O157:H7. We investigated the UV (253.7 nm) inactivation behavior and the capability of dark repair (liquid-holding recovery) and photoreactivation of seven pathogenic (including three enterohemorrhagic E. coli) strains and one nonpathogenic strain of E. coli (ATCC 11229) with respect to the use of UV light for water disinfection purposes. Because most bacteria and yeast are known to be able to repair UV damage in their nucleic acids, repair mechanisms have to be considered to ensure safe water disinfection. We found a wide divergence in the UV susceptibility within the strains tested. A 6-log reduction of bacteria that fulfills the requirement for safe water disinfection was reached for the very most susceptible strain O157:H7 (CCUG 29199) at a UV fluence of 12 J/m2, whereas for the most resistant strain, O25:K98:NM, a UV fluence of about 125 J/m2 was needed. Except for one strain (O50:H7) liquid-holding recovery did not play an important role in recovery after UV irradiation. By contrast, all strains, particularly strains O25:K98:NM, O78:K80:H12, and O157:H7 (CCUG 29193), demonstrated photorepair ability. For a 6-log reduction of these strains, a UV fluence (253.7 nm) up to 300 J/m2 is required. The results reveal that the minimum fluence of 400 J/m2 demanded in the Austrian standard for water disinfection is sufficient to inactivate pathogenic E. coli. A fluence of 160 J/m2 (recommendation in Norway) or 250 J/m2 (recommendation in Switzerland) cannot be regarded as safe in that respect.

2000 ◽  
Vol 63 (5) ◽  
pp. 563-567 ◽  
Author(s):  
J. R. WRIGHT ◽  
S. S. SUMNER ◽  
C. R. HACKNEY ◽  
M. D. PIERSON ◽  
B. W. ZOECKLEIN

This study examined the efficacy of UV light for reducing Escherichia coli O157:H7 in unpasteurized cider. Cider containing a mixture of acid-resistant E. coli O157:H7 (6.3 log CFU/ml) was treated using a thin-film UV disinfection unit at 254 nm. Dosages ranged from 9,402 to 61,005 μW-s/cm2. Treatment significantly reduced E. coli O157:H7 (P ≤ 0.0001). Mean reduction for all treated samples was 3.81 log CFU/ml. Reduction was also affected by the level of background microflora in cider. Results indicate that UV light is effective for reducing this pathogen in cider. However, with the dosages used in this experiment, additional reduction measures are necessary to achieve the required 5-log reduction.


2021 ◽  
Vol 12 (2) ◽  
pp. 288-298
Author(s):  
Waraporn Kusalaruk ◽  
Hiroyuki Nakano

Escherichia coli (E. coli) O157:H7 is a major foodborne pathogen that causes severe human infections. Plant extracts, glycine, and sodium acetate (NaOAc) exert antimicrobial effects that can be used to control pathogenic E. coli. However, their combinations have not been investigated. Thus, this study investigates the combination of ethanolic plant extracts with glycine and NaOAc against E. coli at various pH and temperature levels. Clove and rosemary extracts exhibited significant (p ≤ 0.05) antimicrobial activity against E. coli. At neutral pH, the combination of plant extracts with 1.0% glycine or 0.1% NaOAc reduced the minimum inhibitory concentration of clove from 0.4% to 0.2%; at pH 5.5, clove (0.1%) and rosemary (0.2%) extracts supplemented with NaOAc (0.1%) showed an additive effect. The population of E. coli O157:H7 in phosphate-buffered saline with 0.2% clove extract, 2% glycine, and 2% NaOAc showed a more than 5 log reduction after incubation at 15 °C for 96 h, while the combination of 0.1% clove extract with 2% NaOAc at pH 5.5 completely inhibited E. coli within 24 h at 35 °C. Thus, the combination of plant extracts with glycine and NaOAc could serve as a promising hurdle technology in controlling the growth of E. coli.


2004 ◽  
Vol 67 (6) ◽  
pp. 1153-1156 ◽  
Author(s):  
A. QUINTERO-RAMOS ◽  
J. J. CHUREY ◽  
P. HARTMAN ◽  
J. BARNARD ◽  
R. W. WOROBO

This study examined the effects and interactions of UV light dose (1,800 to 20,331 μJ/cm2) and apple cider pH (2.99 to 4.41) on the inactivation of Escherichia coli ATCC 25922, a surrogate for E. coli O157:H7. A predictive model was developed to relate the log reduction factor of E. coli ATCC 25922 to the UV dose. Bacterial populations for treated and untreated samples were enumerated with the use of nonselective media. The results revealed that UV dose was highly significant in the inactivation of E. coli, whereas pH showed no significant effect at higher UV doses. Doses of 6,500 μJ/cm2 or more were sufficient to achieve a greater than 5-log reduction of E. coli. Experimental inactivation data were fitted adequately by a logistic regression model. UV irradiation is an attractive alternative to conventional methods for reducing bacteria in unpasteurized apple cider.


2018 ◽  
Vol 8 (2) ◽  
pp. 354-364
Author(s):  
A. N. Irkitova ◽  
A. V. Grebenshchikova ◽  
A. V. Matsyura

<p>An important link in solving the problem of healthy food is the intensification of the livestock, poultry and fish farming, which is possible only in the adoption and rigorous implementation of the concept of rational feeding of animals. In the implementation of this concept required is the application of probiotic preparations. Currently, there is an increased interest in spore probiotics. In many ways, this can be explained by the fact that they use no vegetative forms of the bacilli and their spores. This property provides spore probiotics a number of advantages: they are not whimsical, easily could be selected, cultivated, and dried. Moreover, they are resistant to various factors and could remain viable during a long period. One of the most famous spore microorganisms, which are widely used in agriculture, is <em>Bacillus subtilis</em>. Among the requirements imposed to probiotic microorganisms is mandatory – antagonistic activity to pathogenic and conditional-pathogenic microflora. The article presents the results of the analysis of antagonistic activity of collection strains of <em>B. subtilis</em>, and strains isolated from commercial preparations. We studied the antagonistic activity on agar and liquid nutrient medias to trigger different antagonism mechanisms of <em>B. subtilis</em>. On agar media, we applied three diffusion methods: perpendicular bands, agar blocks, agar wells. We also applied the method of co-incubating the test culture (<em>Escherichia coli</em>) and the antagonist (or its supernatant) in the nutrient broth. Our results demonstrated that all our explored strains of <em>B. subtilis</em> have antimicrobial activity against a wild strain of <em>E. coli</em>, but to varying degrees. We identified strains of <em>B. subtilis</em> with the highest antagonistic effect that can be recommended for inclusion in microbial preparations for agriculture.</p><p><em><br /></em><em></em></p>


2020 ◽  
Vol 21 (8) ◽  
pp. 772-776
Author(s):  
Xiao-Pei Peng ◽  
Wei Ding ◽  
Jian-Min Ma ◽  
Jie Zhang ◽  
Jian Sun ◽  
...  

Dietary proteins are linked to the pathogenic Escherichia coli (E. coli) through the intestinal tract, which is the site where both dietary proteins are metabolized and pathogenic E. coli strains play a pathogenic role. Dietary proteins are degraded by enzymes in the intestine lumen and their metabolites are transferred into enterocytes to be further metabolized. Seven diarrheagenic E. coli pathotypes have been identified, and they damage the intestinal epithelium through physical injury and effector proteins, which lead to inhibit the digestibility and absorption of dietary proteins in the intestine tract. But the increased tryptophan (Trp) content in the feed, low-protein diet or milk fractions supplementation is effective in preventing and controlling infections by pathogenic E. coli in the intestine.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 467
Author(s):  
Dipak Kathayat ◽  
Dhanashree Lokesh ◽  
Sochina Ranjit ◽  
Gireesh Rajashekara

Avian pathogenic Escherichia coli (APEC) causes colibacillosis in avian species, and recent reports have suggested APEC as a potential foodborne zoonotic pathogen. Herein, we discuss the virulence and pathogenesis factors of APEC, review the zoonotic potential, provide the current status of antibiotic resistance and progress in vaccine development, and summarize the alternative control measures being investigated. In addition to the known virulence factors, several other factors including quorum sensing system, secretion systems, two-component systems, transcriptional regulators, and genes associated with metabolism also contribute to APEC pathogenesis. The clear understanding of these factors will help in developing new effective treatments. The APEC isolates (particularly belonging to ST95 and ST131 or O1, O2, and O18) have genetic similarities and commonalities in virulence genes with human uropathogenic E. coli (UPEC) and neonatal meningitis E. coli (NMEC) and abilities to cause urinary tract infections and meningitis in humans. Therefore, the zoonotic potential of APEC cannot be undervalued. APEC resistance to almost all classes of antibiotics, including carbapenems, has been already reported. There is a need for an effective APEC vaccine that can provide protection against diverse APEC serotypes. Alternative therapies, especially the virulence inhibitors, can provide a novel solution with less likelihood of developing resistance.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Pouya Reshadi ◽  
Fatemeh Heydari ◽  
Reza Ghanbarpour ◽  
Mahboube Bagheri ◽  
Maziar Jajarmi ◽  
...  

Abstract Background Transmission of antimicrobial resistant and virulent Escherichia coli (E. coli) from animal to human has been considered as a public health concern. This study aimed to determine the phylogenetic background and prevalence of diarrheagenic E. coli and antimicrobial resistance in healthy riding-horses in Iran. In this research, the genes related to six main pathotypes of E. coli were screened. Also, genotypic and phenotypic antimicrobial resistance against commonly used antibiotics were studied, then phylo-grouping was performed on all the isolates. Results Out of 65 analyzed isolates, 29.23 % (n = 19) were determined as STEC and 6.15 % (n = 4) as potential EPEC. The most prevalent antimicrobial resistance phenotypes were against amoxicillin/clavulanic acid (46.2 %) and ceftriaxone (38.5 %). blaTEM was the most detected resistance gene (98.4 %) among the isolates and 26.15 % of the E. coli isolates were determined as multi-drug resistant (MDR). Three phylo-types including B1 (76.92 %), A (13.85 %) and D (3.08 %) were detected among the isolates. Conclusions Due to the close interaction of horses and humans, these findings would place emphasis on the pathogenic and zoonotic potential of the equine strains and may help to design antimicrobial resistance stewardship programs to control the dissemination of virulent and multi-drug resistant E. coli strains in the community.


2011 ◽  
Vol 77 (14) ◽  
pp. 4949-4958 ◽  
Author(s):  
C. Sekse ◽  
M. Sunde ◽  
B.-A. Lindstedt ◽  
P. Hopp ◽  
T. Bruheim ◽  
...  

ABSTRACTA national survey ofEscherichia coliO26 in Norwegian sheep flocks was conducted, using fecal samples to determine the prevalence. In total, 491 flocks were tested, andE. coliO26 was detected in 17.9% of the flocks. One hundred forty-twoE. coliO26 isolates were examined for flagellar antigens (H typing) and four virulence genes, includingstxandeae, to identify possible Shiga toxin-producingE. coli(STEC) and enteropathogenicE. coli(EPEC). Most isolates (129 out of 142) were identified asE. coliO26:H11. They possessedeaeand may have potential as human pathogens, although only a small fraction were identified as STEC O26:H11, giving a prevalence in sheep flocks of only 0.8%. Correspondingly, the sheep flock prevalence of atypical EPEC (aEPEC) O26:H11 was surprisingly high (15.9%). The genetic relationship between theE. coliO26:H11 isolates was investigated by pulsed-field gel electrophoresis (PFGE) and multilocus variable number tandem repeat analysis (MLVA), identifying 63 distinct PFGE profiles and 22 MLVA profiles. Although the MLVA protocol was less discriminatory than PFGE and a few cases of disagreement were observed, comparison by partition mapping showed an overall good accordance between the two methods. A close relationship between a few isolates of aEPEC O26:H11 and STEC O26:H11 was identified, but all theE. coliO26:H11 isolates should be considered potentially pathogenic to humans. The present study consisted of a representative sampling of sheep flocks from all parts of Norway. This is the first large survey of sheep flocks focusing onE. coliO26 in general, including results of STEC, aEPEC, and nonpathogenic isolates.


Author(s):  
Braden Wiser ◽  
S.E. Niebuhr ◽  
James Dickson

A mixed culture of different isolates of Salmonella serovar I 4,[5], 12:i:- was compared to a mixed culture of reference Salmonella serovars as well as non-pathogenic Escherichia coli surrogates.. The two groups of Salmonella were compared for their resistance to commonly used pork carcass interventions, survival in ground pork and thermal resistance in ground pork. There were no observed differences between the response of the two different groups of Salmonella serovars and the non-pathogenic E. coli surrogates within intervention type.  There were no observed differences in the recovery and survival of the two different groups of Salmonella serovars in pork which had been treated with interventions, ground and stored at 5 o C for two weeks. Finally, there were no observed differences in heat resistance between the two different groups of Salmonella serovars in ground pork which had been treated with interventions, ground and stored at 5 o C for two weeks. However, there were observed differences in heat resistance in both groups of Salmonella serovars associated with refrigerated storage. The heat resistance of both groups of Salmonella serovars decreased after refrigerated storage. The results of these experiments demonstrate that there were no observed differences between the responses of Salmonella serovar I 4,[5], 12:i:- when compared to the reference Salmonella serovars to commonly used interventions in the pork industry, and therefore do not present a unique challenge to the pork industry.


2000 ◽  
Vol 63 (6) ◽  
pp. 703-708 ◽  
Author(s):  
MARCY A. WISNIEWSKY ◽  
BONITA A. GLATZ ◽  
MARK L. GLEASON ◽  
CHERYLL A. REITMEIER

The objectives of this study were to determine if washing of whole apples with solutions of three different sanitizers (peroxyacetic acid, chlorine dioxide, or a chlorine-phosphate buffer solution) could reduce a contaminating nonpathogenic Escherichia coli O157:H7 population by 5 logs and at what sanitizer concentration and wash time such a reduction could be achieved. Sanitizers were tested at 1, 2, 4, 8, and 16 times the manufacturer's recommended concentration at wash times of 5, 10, and 15 min. Whole, sound Braeburn apples were inoculated with approximately 1 × 108 or 7 × 106 CFU per apple, stored for 24 h, then washed with sterile water (control) or with sanitizers for the prescribed time. Recovered bacteria were enumerated on trypticase soy agar. Washing with water alone reduced the recoverable population by almost 2 logs from the starting population; this can be attributed to physical removal of organisms from the apple surface. No sanitizer, when used at the recommended concentration, reduced the recovered E. coli population by 5 logs under the test conditions. The most effective sanitizer, peroxyacetic acid, achieved a 5-log reduction when used at 2.1 to 14 times its recommended concentration, depending on the length of the wash time. The chlorine-phosphate buffer solution reduced the population by 5 logs when used at 3 to 15 times its recommended concentration, depending on wash time. At no concentration or wash time tested did chlorine dioxide achieve the 5-log reduction.


Sign in / Sign up

Export Citation Format

Share Document