scholarly journals Biochar for wastewater treatment – a Minireview**

Author(s):  
Lena Johansson Westholm

Wastewater must be treated no matter if is reused or discharged into the environment. The cost of wastewater treatment may be rather high, though other solutions are sought. One of them is the application of filter materials. The filter materials have been used for removal of various pollutants in different kinds of wastewater and a wide range of filter materials (natural products, industrial waste products or man-made products) have been investigated. Among these filter materials, biochar has attracted increasing attention during the last decade. A large number of publications are devoted to production, properties and potential applications of biochar. They reveal that biochar is capable of removing pollutants of different kinds from wastewaters. A number of experiments was focused on the removal of commonly found pollutants, e.g. nutrients, heavy metals, organic matters and pharmaceuticals. It was found that the origin of the feedstock and the thermochemical treatment method are tightly connected and will have an impact on the properties of the biochar. A large number of different feedstock material like wood or wood residues, garden wastes or human and animal wastes can be transformed into biochar by torrefaction and pyrolysis. Properties of biochar will depend on transformation method. Surface area, porosity, pH, surface charge, functional groups and mineral components contribute to a vast number of mechanisms that are responsible for the metal removal, e.g. electrostatic interaction between the surface of the biochar and the specific metal, the cation exchange capacity between metals and protons and the alkaline metals on the surface of the biochar, metal complexation with functional groups and precipitation of metals that form non-soluble compounds. Biochar was successfully applied in wetlands systems to increase the removal of some targeted pollutants.

2010 ◽  
Vol 61 (10) ◽  
pp. 2617-2624 ◽  
Author(s):  
I. Kabdaşlı ◽  
T. Arslan ◽  
I. Arslan-Alaton ◽  
T. Ölmez-Hancı ◽  
O. Tünay

In the present study, the treatment of metal plating wastewater containing complexed metals originating from the nickel and zinc plating process by electrocoagulation (EC) using stainless steel electrodes was explored. In order to improve the organic matter removal efficiency, the effect of H2O2 addition to the electrocoagulation (the combined EC/Fenton process) application was investigated. For this purpose, a wide range of H2O2 concentrations varying between 15 and 230 mM was tested. All EC and EC/Fenton processes were performed at an initial pH of 2.6 and at an optimized current density of 22 mA/cm2. Although up to 30 mM H2O2 addition improved the EC process performance in terms of organic matter abatement, the highest COD and TOC removal efficiencies were obtained for the combined EC/Fenton process in the presence of 20 mM H2O2. Nickel and zinc were completely removed for all runs tested in the present study after pH adjustments. At the optimized operation conditions, the combined EC/Fenton process proved to be an alternative treatment method for the improvement of organic matter reduction as well as complexed metal removal from metal plating industry wastewater.


2021 ◽  
Vol 290 ◽  
pp. 01005
Author(s):  
Wei Liang

Acrylic fiber is one of the earliest developed chemical fiber species in China. Acrylic products are fluffy, warm, soft to the touch, and have good weather resistance and anti-mildew and anti-moth properties. Acrylic fiber has a wide range of applicability, but the wastewater generated during its production is a major problem facing the world. The complex composition and high toxicity of acrylic wastewater pollutants, the presence of many oligomers and other difficult to biodegrade, as well as the presence of sulfate, sulfite and other bioinhibitory components, make the biochemical properties of acrylic wastewater very low, making it very difficult to treat. In this paper, we propose an acrylic wastewater treatment method based on deep oxidation technology to solve this problem, which can effectively carry out wastewater treatment and make it meet the national discharge standards.


2009 ◽  
Vol 166 (2-3) ◽  
pp. 734-739 ◽  
Author(s):  
Agnieszka Renman ◽  
Gunno Renman ◽  
Jon Petter Gustafsson ◽  
Lars Hylander

Author(s):  
Hossein Farraji ◽  
Nastaein Qamaruz Zaman ◽  
Mohammad Ali Zahed ◽  
Hamed Faraji

Rhizoremediation is a natural biological base, multifactorial operation treatment method which highly depends to environmental factors especially in terrestrial environment as operation of remediation process. Interaction and relationship between microbial community and plant roots is specific attraction and advantages of this advanced treatment method. Decontamination efficiency and time could be highly manageable by operation and rhizoaugmentation. Rhizoremediation is advanced compact combination of phytoextraction, phytovolatilization, phytotransformation and phytostabilization. High efficiency of pollutants removal, adaptive and wide range of operation and augmentation factors cause of emerging application of this for biodegradable organic compounds and heavy metals. Selection of suitable plant and joining them with comfortable microbial couples is a function which can plane simultaneously removal system. This chapter will present an overview on PAH, TPH, PCB and heavy metal removal and mechanism of decontamination, plant selection and augmentation process.


2003 ◽  
Vol 3 (5-6) ◽  
pp. 321-327 ◽  
Author(s):  
M. Gallenkemper ◽  
T. Wintgens ◽  
T. Melin

Endocrine disrupting compounds can affect the hormone system in organisms. A wide range of endocrine disrupters were found in sewage and effluents of municipal wastewater treatment plants. Toxicological evaluations indicate that conventional wastewater treatment plants are not able to remove these substances sufficiently before disposing effluent into the environment. Membrane technology, which is proving to be an effective barrier to these substances, is the subject of this research. Nanofiltration provides high quality permeates in water and wastewater treatment. Eleven different nanofiltration membranes were tested in the laboratory set-up. The observed retention for nonylphenol (NP) and bisphenol A (BPA) ranged between 70% and 100%. The contact angle is an indicator for the hydrophobicity of a membrane, whose influence on the permeability and retention of NP was evident. The retention of BPA was found to be inversely proportional to the membrane permeability.


1978 ◽  
Vol 5 (1) ◽  
pp. 83-97 ◽  
Author(s):  
Robert D. Cameron

The use of cheap, locally available peat as a treatment method for landfill leachate was investigated by passing leachate through plexiglass columns filled with an amorphous-granular peat. Preliminary adjustment of pH showed that reducing pH to 4.8 dramatically reduced adsorption. Increasing the pH to 8.4, metal removal was increased owing to filtration of precipitated metals. The best adsorption of metals occurred at the 'natural' pH of 7.1. Manganese was found to be the limiting pollutant. At the 0.05 mg/ℓ maximum acceptable manganese concentration 94% of the total metals were removed, requiring 159 kg of peat per 1000 ℓ of leachate.Resting the peat for 1 month did significantly increase removal capacity.Desorption of some contaminants occurred when water was percolated through the peat. The desorption test effluent was not toxic to fish although iron, lead and COD (chemical oxygen demand) exceeded acceptable values.Chemical pretreatment using lime and ferric chloride achieved significant iron, manganese and calcium removals. Chemical pretreatment followed by peat adsorption offered no advantage other than reducing toxicity to fish.Peat treatment alone was effective in reducing concentrations to a level that was non-toxic to fish.


2020 ◽  
Vol 15 (1) ◽  
pp. 787-796 ◽  
Author(s):  
Marek Kieliszek ◽  
Kamil Piwowarek ◽  
Anna M. Kot ◽  
Katarzyna Pobiega

AbstractCellular biomass of microorganisms can be effectively used in the treatment of waste from various branches of the agro-food industry. Urbanization processes and economic development, which have been intensifying in recent decades, lead to the degradation of the natural environment. In the first half of the 20th century, problems related to waste management were not as serious and challenging as they are today. The present situation forces the use of modern technologies and the creation of innovative solutions for environmental protection. Waste of industrial origin are difficult to recycle and require a high financial outlay, while the organic waste of animal and plant origins, such as potato wastewater, whey, lignin, and cellulose, is dominant. In this article, we describe the possibilities of using microorganisms for the utilization of various waste products. A solution to reduce the costs of waste disposal is the use of yeast biomass. Management of waste products using yeast biomass has made it possible to generate new metabolites, such as β-glucans, vitamins, carotenoids, and enzymes, which have a wide range of industrial applications. Exploration and discovery of new areas of applications of yeast, fungal, and bacteria cells can lead to an increase in their effective use in many fields of biotechnology.


Synthesis ◽  
2021 ◽  
Author(s):  
Alexandre Desaintjean ◽  
Fanny Danton ◽  
Paul Knochel

A wide range of polyfunctionalized di(hetero)aryl- and dialkenyl-magnesium reagents were prepared in toluene within 10 to 120 min between −78 °C and 25 °C via an I/Mg- or Br/Mg-exchange reaction using reagents of the general formula R2Mg (R = sBu, Mes). Highly sensitive functional groups, such as a triazene or a nitro group, were tolerated in these exchange reactions, enabling the synthesis of various functionalized (hetero)arenes and alkenes derivatives after quenching with several electrophiles including allyl bromides, acyl chlorides, aldehydes, ketones, and aryl iodides.


2016 ◽  
Vol 102 ◽  
pp. 453-463 ◽  
Author(s):  
Maximilian Huber ◽  
Harald Hilbig ◽  
Sophia C. Badenberg ◽  
Julius Fassnacht ◽  
Jörg E. Drewes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document