Immediate Effect of Spinal Mobilization on Lower Limb Strength in Healthy Individuals: A Pilot Study

2020 ◽  
Vol 11 (2) ◽  
pp. 2090-2095
Author(s):  
Hojung An ◽  
Junghyun Choi ◽  
Taeseok Choi ◽  
Seoyoon Heo ◽  
Chaegil Lim ◽  
...  
2017 ◽  
Vol 51 (4) ◽  
pp. 382.1-382
Author(s):  
Italo Sannicandro ◽  
Vito Tisci ◽  
Antonio Quarto ◽  
Giacomo Cofano ◽  
Anna Rosa Rosa

2021 ◽  
Vol 30 (1) ◽  
pp. 161-165
Author(s):  
Christopher Kevin Wong ◽  
Lizbeth Conway ◽  
Grant Fleming ◽  
Caitlin Gopie ◽  
Dara Liebeskind ◽  
...  

Clinical Scenario: Many people with lower quarter musculoskeletal dysfunction present with muscle weakness. Strength training hypertrophies muscle and increases strength, but often requires periods over 6 weeks, which can exceed the episode of care. Weakness can persist despite muscle hypertrophy, particularly in the early stages of joint pathology or in the presence of limb or spinal joint hypomobility, which may inhibit muscle activation. Emerging evidence suggests spinal manipulation can increase short-term strength. Screening for specific muscle weakness that could benefit from manipulation to particular spinal segments could facilitate efficient clinical intervention. Although the neuromuscular mechanisms through which manipulation can increase strength remains a topic of investigation, immediate gains can benefit patients by jump-starting an exercise program to train new muscle function gained and enhancing the motivation to continue strengthening. Evidence from randomized controlled trials would provide support for using manipulation to increase muscle strength, while studying healthy people would eliminate confounding factors, such as pain and pathology. Clinical Question: Does randomized controlled trial-level evidence support the concept that a single lumbar spine manipulation session can increase lower-limb strength in healthy individuals? Summary of Key Findings: Level 1b evidence of moderate quality from 3 randomized controlled trials showed immediate small to large effect size muscle strength increases immediately after lumbar spine manipulation. Clinical Bottom Line: Lumbar spine manipulation can result in immediate lower-limb isometric strength increases. While healthy people with normal muscle strength may improve minimally, joint manipulation for people with knee and hip weakness who are otherwise healthy can result in large effect size strength gains. Strength of Recommendation: Moderate quality level 1b evidence from randomized controlled trials with small samples support the use of spinal manipulation to immediately increase lower-limb strength. Additional studies investigating impact on strength and function immediately in people with musculoskeletal pathology are warranted.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 627-P
Author(s):  
WUQUAN DENG ◽  
MIN HE ◽  
BING CHEN ◽  
YU MA ◽  
DAVID ARMSTRONG ◽  
...  

2021 ◽  
Vol 28 (Supplement_1) ◽  
Author(s):  
M Borges ◽  
M Lemos Pires ◽  
R Pinto ◽  
G De Sa ◽  
I Ricardo ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Introduction Exercise prescription is one of the main components of phase III Cardiac Rehabilitation (CR) programs due to its documented prognostic benefits. It has been well established that, when added to aerobic training, resistance training (RT) leads to greater improvements in peripheral muscle strength and muscle mass in patients with cardiovascular disease (CVD). With COVID-19, most centre-based CR programs had to be suspended and CR patients had to readjust their RT program to a home-based model where weight training was more difficult to perform. How COVID-19 Era impacted lean mass and muscle strength in trained CVD patients who were attending long-term CR programs has yet to be discussed. Purpose To assess upper and lower limb muscle strength and lean mass in CVD patients who had their centre-based CR program suspended due to COVID-19 and compare it with previous assessments. Methods 87 CVD patients (mean age 62.9 ± 9.1, 82.8% male), before COVID-19, were attending a phase III centre-based CR program 3x/week and were evaluated annually. After 7 months of suspension, 57.5% (n = 50) patients returned to the face-to-face CR program. Despite all constraints caused by COVID-19, body composition and muscle strength of 35 participants (mean age 64.7 ± 7.9, 88.6% male) were assessed. We compared this assessment with previous years and established three assessment time points: M1) one year before COVID-19 (2018); M2) last assessment before COVID-19 (2019); M3) the assessment 7 months after CR program suspension (last trimester of 2020). Upper limbs strength was measured using a JAMAR dynamometer, 30 second chair stand test (number of repetitions – reps) was used to measure lower limbs strength and dual energy x-ray absorptiometry was used to measure upper and lower limbs lean mass. Repeated measures ANOVA were used. Results Intention to treat analysis showed that upper and lower limbs lean mass did not change from M1 to M2 but decreased significantly from M2 to M3 (arms lean mass in M2: 5.68 ± 1.00kg vs M3: 5.52 ± 1.06kg, p = 0.004; legs lean mass in M2: 17.40 ± 2.46kg vs M3: 16.77 ± 2.61kg, p = 0.040). Lower limb strength also decreased significantly from M2 to M3 (M2: 23.31 ± 5.76 reps vs M3: 21.11 ± 5.31 reps, p = 0.014) after remaining stable in the year prior to COVID-19. Upper limb strength improved significantly from M1 to M2 (M1: 39.00 ± 8.64kg vs M2: 40.53 ± 8.77kg, p = 0.034) but did not change significantly from M2 to M3 (M2 vs M3: 41.29 ± 9.13kg, p = 0.517). Conclusion After CR centre-based suspension due to COVID-19, we observed a decrease in upper and lower limbs lean mass and lower limb strength in previously trained CVD patients. These results should emphasize the need to promote all efforts to maintain physical activity and RT through alternative effective home-based CR programs when face-to-face models are not available or possible to be implemented.


2021 ◽  
Vol 86 ◽  
pp. 150-156
Author(s):  
L. van Kouwenhove ◽  
G.J. Verkerke ◽  
K. Postema ◽  
R. Dekker ◽  
J.M. Hijmans

2021 ◽  
Vol 11 (8) ◽  
pp. 3391
Author(s):  
Jan Marušič ◽  
Goran Marković ◽  
Nejc Šarabon

The purpose of this study was to evaluate intra- and inter-session reliability of the new, portable, and externally fixated dynamometer called MuscleBoard® for assessing the strength of hip and lower limb muscles. Hip abduction, adduction, flexion, extension, internal and external rotation, knee extension, ankle plantarflexion, and Nordic hamstring exercise strength were measured in three sessions (three sets of three repetitions for each test) on 24 healthy and recreationally active participants. Average and maximal value of normalized peak torque (Nm/kg) from three repetitions in each set and agonist:antagonist ratios (%) were statistically analyzed; the coefficient of variation and intra-class correlation coefficient (ICC2,k) were calculated to assess absolute and relative reliability, respectively. Overall, the results display high to excellent intra- and inter-session reliability with low to acceptable within-individual variation for average and maximal peak torques in all bilateral strength tests, while the reliability of unilateral strength tests was moderate to good. Our findings indicate that using the MuscleBoard® dynamometer can be a reliable device for assessing and monitoring bilateral and certain unilateral hip and lower limb muscle strength, while some unilateral strength tests require some refinement and more extensive familiarization.


Sign in / Sign up

Export Citation Format

Share Document