scholarly journals Assessing the Impacts of Electricity Utilization in Educational Faculties: A Thailand Case Study

2018 ◽  
Vol 1 (1) ◽  
pp. 6
Author(s):  
Dalia M. M. Yacout ◽  
Pramote Sirirote ◽  
M. M. Yacout ◽  
Dusanee Thanaboripat

In view of the up-scaling energy crises worldwide, efforts have been focusing on reducing energy consumption and replacing fossil fuels usage with renewable energy sources. Thailand is one of the developing countries that have been facing an increase in energy demand associated to its economic expansion. The development in the educational sector is one of the sectors causing an increasing energy demand.Purpose: This study aims to quantify energy usage and understand its environmental impacts in one of the educational facilities in Thailand in order to identify energy saving opportunities and improvement options related to energy consumption in this sector. Materials and Methods: The investigation included a historical energy analysis for energy utilization of the facility, an onsite energy audit and an environmental impacts assessment. A number of potential energy saving opportunities was identified; related cost savings and CO2 reduction were calculated. Additionally, the environmental impacts of energy utilization were simulated using the life cycle assessment technique. Special attention was given to potential impacts on global warming due to its direct association to fossil fuels combustion.Results and discussion: the pattern of energy utilization was identified and it clarified that the major contributor to energy utilization was energy consumption practices by students and staff of the faculty. Consequently, awareness raising of energy saving opportunities and people involvement was the major area of improvement. Results show that increasing people involvement in energy saving practices could lead to a cost saving of 46,000-120,000 USD/Year with low cost investment and a 100-240 ton CO2 reduction. Other potential savings were using motion sensors which save 30-40% of energy costs in offices and utilizing renewable solar energy as a source for electricity. This will save 13,300-33,300 USD/Year with a 7.5 years payback and 35-50 years lifetime.When assessing the associated environmental impacts to electricity production, five main categories were found to be impacted: fossil fuels depletion, respiratory inorganics formation potential, global worming potential, acidification potential and eutrophication potential. The application of the suggested energy saving opportunities will reduce the electricity consumption, lower generated air emissions from fossil fuels combustion, consequently minimize all associated impacts specially global worming potential.In Conclusion: assessing energy utilization of educational facilities is essential to reduce energy demand in an up-scaling economy. Energy analysis and onsite energy audits are efficient methods for recognizing energy utilization patterns and identifying energy saving opportunities. The implemented investigation in this study can be applied in different educational facilities. 

2011 ◽  
Vol 130-134 ◽  
pp. 1578-1581
Author(s):  
Cai Juan Zhang ◽  
Li Gang Wang ◽  
Ling Nan Wu ◽  
Tong Liu ◽  
Qiang Lu ◽  
...  

With the social rapid development, the earth's limited primary energy such as coal, oil, natural gas etc will be exhausted; energy problem has caused worldwide widespread attention. Therefore, under the development of renewable energy, without exception, each country is actively trying to explore the new theory and using energy-saving and technology to improve energy utilization ratio and reduce the energy consumption and the harm on environment. Scientific analysis of energy saving is an important link of digging energy saving potential, effective energy analysis method plays a pivotal role in implementing saving energy. This paper summarized several energy analysis methods on the basis of the first and second law of thermodynamics, introduced the most widely used enthalpy analysis method, entropy analysis, exergy analysis and exergy economic analysis which are based on the second law of thermodynamics, introduced emphatically the specific consumption analysis theory development with exergy analysis and exergy economic analysis.


Author(s):  
Yigit Fidansoy ◽  
Sohejl Wanjani ◽  
Sebastian Schmidt

Due to the increasing scarcity of fossil fuels and the climate change, the importance of energy efficiency is increasing. This importance is major especially in areas where the energy consumption is high. Rail transport depicts such an area. The highest proportion of energy consumed in the railway is the so called traction energy. This energy is required for the train run. In the timetable, allowances leave a margin for the driving style of train run. By the selective use of strategies that change the driving style, it is possible to exploit these allowances and reduce the traction energy consumption. The first objective of this study deals with the development of algorithms for energy-saving driving style. First, the necessary input variables of the algorithms based on the literature research and the formulas of train dynamics were determined. Then the algorithms were developed to create different energy-saving driving styles, resulting choose the best result which should be shown as a driving recommendation. The developed algorithms were used in an application example in order to calculate the potential of energy-savings. The example should represent the influence of the input variables for a comparison of different situations. At last the acceptance of the determined driving strategies in practice was investigated. By implementing the design thinking method it was identified that driver advisory systems and training programs are necessary to facilitate energy-saving driving in practice.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3252 ◽  
Author(s):  
Xiaolong Xu ◽  
Guohui Feng ◽  
Dandan Chi ◽  
Ming Liu ◽  
Baoyue Dou

Optimizing key parameters with energy consumption as the control target can minimize the heating and cooling needs of buildings. In this paper we focus on the optimization of performance parameters design and the prediction of energy consumption for nearly Zero Energy Buildings (nZEB). The optimal combination of various performance parameters and the Energy Saving Ratio (ESR)are studied by using a large volume of simulation data. Artificial neural networks (ANNs) are applied for the prediction of annual electrical energy consumption in a nearly Zero Energy Building designs located in Shenyang (China). The data of the energy demand for our test is obtained by using building simulation techniques. The results demonstrate that the heating energy demand for our test nearly Zero Energy Building is 17.42 KW·h/(m2·a). The Energy Saving Ratio of window-to-wall ratios optimization is the most obvious, followed by thermal performance parameters of the window, and finally the insulation thickness. The maximum relative error of building energy consumption prediction is 6.46% when using the artificial neural network model to predict energy consumption. The establishment of this prediction method enables architects to easily and accurately obtain the energy consumption of buildings during the design phase.


2017 ◽  
Vol 9 (1) ◽  
pp. 5-14 ◽  
Author(s):  
Maryam Hamlehdar ◽  
Alireza Aslani

Abstract Today, the fossil fuels have dominant share of energy supply in order to respond to the high energy demand in the world. Norway is one of the countries with rich sources of fossil fuels and renewable energy sources. The current work is to investigate on the status of energy demand in Norway. First, energy and electricity consumption in various sectors, including industrial, residential are calculated. Then, energy demand in Norway is forecasted by using available tools. After that, the relationship between energy consumption in Norway with Basic economics parameters such as GDP, population and industry growth rate has determined by using linear regression model. Finally, the regression result shows a low correlation between variables.


Stanovnistvo ◽  
2017 ◽  
Vol 55 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Predrag Petrovic ◽  
Goran Nikolic ◽  
Ivana Ostojic

Over the past several decades there has been a strong intensifying trend of human society impact on ecosystems, consumption of natural resources and global change. The environmental impact of the society is fully apparent and dominantly implemented through various greenhouse gases emissions (GHG), leading towards global climate change with considerably spread harmful effects. Global climate change includes the earth and ocean surface and atmospheric warming, but also melting of snow and ice, increase of sea levels and ocean acidity, as well as ever more common natural phenomena extremes (winds, various forms of rainfall/precipitation, extremely low or high temperatures, etc.). Scientists are well-familiarized with the fact that use of fossil fuels, such as oil derivatives and coal, is the main generator of harmful gases. In addition, possible substitutions for fossil fuels in the form of other energy sources are very limited, and it should be remembered that other energy sources also have certain adverse environmental effects. Bearing in mind climate change caused by products of fossil fuels combustion, as well as inevitable depletion of natural crude oil resources, management of growing global energy demand becomes one of the key goals and challenges of 21st century. If these reasons are coupled with obligations emanating from Kyoto Protocol, it is clear that attention of researches should be more than reasonably focused on the main determinants of energy consumption. This study is focused on illumination of key demographic and economic determinants of energy consumption in 28 EU member states in the period 1960- 2014. The results obtained demonstrate that population positively and quite strongly influence total energy consumption. An increase of population of 1% will result in an increase of energy consumption of 1.59% to 1.76%. Such relation most probably can be explained by the fact that demographic growth of the society aggravates and complicates planning processes of efficient energy consumption, diminishing the ability of society to be energy efficient. The population effect of persons aged 65 and above to energy consumption is also positive. An increase in share of this age group of 1% will result in an increase in energy consumption of approximately 0.43%. Positive elasticity coefficient should be understood as a proof that European societies with higher share of senior citizens consume more energy that societies with higher share of younger population, not necessarily as an argument that senior citizens use more energy than younger population. The explanation for such nature of a cause-andeffect relation could be that high share of senior citizens influences the structure of production and consumption, spatial distribution of population, transport infrastructure and social services provided. A significant influence on energy consumption in the EU is made by the level of economic development of countries, which is in accordance with the Environmental Kuznets Curve (EKC), suggesting a relation of inverted letter ?U?. The amount of income per capita needed to have the EKC expressed ranges between 54,183 and 81,552 dollars.


2018 ◽  
Vol 19 (4) ◽  
pp. 773-789 ◽  
Author(s):  
Angel Ancha Lindelwa Bulunga ◽  
Gladman Thondhlana

Purpose In response to increasing energy demand and financial constraints to invest in green infrastructure, behaviour change energy-saving interventions are increasingly being considered as a tool for encouraging pro-environmental behaviour in campus residences. This paper aims to report on a pilot programme aimed at reducing energy consumption via behaviour change interventions, variably applied in residences at Rhodes University, South Africa. Design/methodology/approach Data were collected via structured questionnaires, energy consumption records and post-intervention programme focus group discussions. Findings Participant residences that received a mix of different interventions in the forms of pamphlets, face-to-face discussions, incentives and feedback recorded more energy reductions of up to 9 per cent than residences that received a single or no intervention. In post-experiment discussions, students cited personal, institutional and structural barriers to pro-environmental energy-use behaviour. Practical implications Overall, the results of this study suggest that information provision of energy-saving tips combined with regular feedback and incentives can result in energy-use reductions in university residences, which may yield environmental and economic benefits for universities, but addressing barriers to pro-environmental behaviour might maximise the results. Originality/value Given the lack of literature on energy conservation in the global South universities, this study provides the basis for discussing the potential for using behavioural interventions in universities for stirring pathways towards sustainability.


2020 ◽  
pp. 0958305X2094403
Author(s):  
Emrah Ismail Cevik ◽  
Durmuş Çağrı Yıldırım ◽  
Sel Dibooglu

We examine the relationship between renewable and non-renewable energy consumption and economic growth in the United States. While the regime-dependent Granger causality test results for the non-renewable energy consumption and economic growth suggest bi-directional causality in both regimes, we cannot validate any causality between renewable energy consumption and economic growth. The US meets its energy demand from non-renewable sources; as such, renewable energy consumption does not seem to affect economic growth. Given the efficiency and productivity of renewable energy investments, we conclude that it is worthwhile to consider renewable energy inputs to replace fossil fuels given potential benefits in terms of global warming and climate change concerns. In this regard, increasing the R&D investments in the renewable energy sectors, increases in productivity and profitability of renewable energy investments are likely to accrue benefits in the long run.


2014 ◽  
Vol 522-524 ◽  
pp. 1670-1674
Author(s):  
Qian Dong

Industrialization brings great pressure to the construction of urban ecological environment. Yinchuan of Ningxia, located in the northwest economic underdeveloped regions, has good energy supply conditions. Unreasonable energy consumption structure and energy utilization way leads to massive energy consumption. Give some prediction for the possible future energy demand mode, and give suggestion on aspects of the urban heating and the development of energy industry planning.


2013 ◽  
Vol 634-638 ◽  
pp. 3163-3169
Author(s):  
Bao Qing Wang ◽  
Lei Zhang ◽  
De Qing Wang ◽  
Shuai Yin ◽  
Shu Yao

To assess some technologies which are more appropriate for the development of the iron and steel industry in China, a model was developed based on the Long range Energy Alternatives Planning System (LEAP) to assess the energy saving and CO2 reduction potentials from 2010 to 2040. The results show that the top three saving energy potentials is non-blast furnace iron-making accounted for 6.85%, device enlargement for 5.85%, advanced blast furnace for 4.84%, and also show that the top three CO2 reduction potentials is device enlargement accounted for 11.7%, non-blast furnace iron-making for 6.21%, advanced coke and blast furnace 5.52%. In the Mitigation scenario, it can reduce 28% of the initial energy demand and 35.2% of CO2 emissions. It can provide a method and data for search energy saving and CO2 reduction potentials in iron and steel industry by LEAP model.


2020 ◽  
Vol 25 (2) ◽  
pp. 261-268
Author(s):  
Guillermo Valencia ◽  
Katherin Nahomy Rodriguez ◽  
Gloria Raquel Torregroza Matos ◽  
Carlos Acevedo ◽  
Jorge Duarte Forero

Given the growth in energy demand, the limited energy resources, and the high environmental impact of energy generation from fossil fuels, it is vital to find methods to obtain save energy costs in different sectors, such as residential, industrial, transportation sector, and domestic. This paper presents a methodology that allows the implementation of an energy management system following the guidelines of the ISO 50001 standard. A gap analysis was performed to determine the position of the organization with respect to the requirements of the standard, and the next step was the inspection of the plant to find opportunities for improvement that would lead to energy optimization. From the results, six equipment was the cause of the 82% of the energy consumption in the production process, and some recommendation was proposed with the aim to optimize energy consumption. A methodology is proposed for the standard implementation, which can be implemented by different organizations from different fields to achieve savings in energy costs in the plant. Some relevant actions to improve the energy performance of the plant were proposed, such as the optimization of the compressed air system, the reduction of potential numbers of leakage, and the reduction of the working pressure of the system.


Sign in / Sign up

Export Citation Format

Share Document