scholarly journals Aprovechamiento de residuos orgánicos (cáscara de almendra) para sustitución de árido grueso en la elaboración de hormigón convencional = Use of organic waste (almond shell) to replace coarse aggregate in conventional concrete processing

2016 ◽  
Vol 2 (3) ◽  
pp. 1
Author(s):  
Arturo Bustos

ResumenEl presente trabajo, busca conocer el posible aprovechamiento de residuos orgánicos, como es la cáscara de almendra, como sustitución de una parte de la fracción granulométrica del árido grueso para la fabricación de hormigones convencionales. Para ello, primero, caracterizamos los materiales, árido y cascara de almendra. Posteriormente, fabricamos las probetas de hormigón con distintas sustituciones (10%, 20% y 30%) de cáscara de almendra sobre la fracción gruesa del árido y procedemos a la realización de los ensayos marcados por las normas UNE, evaluando su comportamiento a compresión, tracción, flexión, penetración de agua, absorción de agua, hielo y deshielo y térmico.AbstractThe present work seeks to know the possible use of organic residues, such as the almond husk, as a substitution of a part of the granulometric fraction of the coarse aggregate for the manufacture of conventional concretes. For this, first, we characterize the materials, arid and almond husk. Subsequently, we made the concrete samples with different substitutions (10%, 20% and 30%) of almond shell on the coarse fraction of the aggregate and proceed to the tests marked by UNE standards, evaluating their behavior to compression, Traction, flexion, water penetration, water absorption, ice and melt and thermal.

Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 556
Author(s):  
Muhammad Faisal Javed ◽  
Afaq Ahmad Durrani ◽  
Sardar Kashif Ur Rehman ◽  
Fahid Aslam ◽  
Hisham Alabduljabbar ◽  
...  

Numerous research studies have been conducted to improve the weak properties of recycled aggregate as a construction material over the last few decades. In two-stage concrete (TSC), coarse aggregates are placed in formwork, and then grout is injected with high pressure to fill up the voids between the coarse aggregates. In this experimental research, TSC was made with 100% recycled coarse aggregate (RCA). Ten percent and twenty percent bagasse ash was used as a fractional substitution of cement along with the RCA. Conventional concrete with 100% natural coarse aggregate (NCA) and 100% RCA was made to determine compressive strength only. Compressive strength reduction in the TSC was 14.36% when 100% RCA was used. Tensile strength in the TSC decreased when 100% RCA was used. The increase in compressive strength was 8.47% when 20% bagasse ash was used compared to the TSC mix that had 100% RCA. The compressive strength of the TSC at 250 °C was also determined to find the reduction in strength at high temperature. Moreover, the compressive and tensile strength of the TSC that had RCA was improved by the addition of bagasse ash.


2019 ◽  
Vol 8 (4) ◽  
pp. 12142-12146

Geopolymer concrete is one of the major developments in recent years resulting in utilization of fly ash in huge quantities and eventually reducing cement consumption and ultimately reducing emission of greenhouse gases.The geopolymer concrete is produced by using activated fly ash as binder material instead of cement. Geopolymer concrete accomplishes great strength and looks similar to conventional concrete. Recycled coarse aggregate (RCA )which is coming from demolition of construction of old and existing structures has been used in this study. The durability property; acid attack resistance with partial replacement of coarse aggregate by recycled aggregate in geopolymer and conventional concrete for the different composition such as 10, 20, 30 and 40percentage for a period of 15, 45,75 and 105 days has been evaluated. From the results it was observed that in both natural and recycled aggregate of Geopolymer concrete is highly resistant to acids such as sulphuric acid and hydrochloric acid compared to conventional concrete of respective aggregates.


InterConf ◽  
2021 ◽  
pp. 418-426
Author(s):  
Thi Ngoc Quyen Nguyen

The biggest disadvantage of conventional concrete is brittle and hard, in addition, its durability is not high. The low durability of concrete is due to the presence of calcium hydroxide at the intersection of coarse aggregate particles and hard cement powder. The introduction of coconut fiber and polyvinyl alcohol (PVA) fibers into the concrete to improve the durability and flexibility of the concrete. In addition, the article also considers the effects of other additives such as rice husk ash, silica fume to study the performance of the structure as well as its durability when joining concrete mixes to create flexible concrete movable and more flexible than conventional concrete.


2001 ◽  
Vol 7 (6) ◽  
pp. 446-452
Author(s):  
Gintautas Skripkiūnas ◽  
Vitoldas Vaitkevičius

The results of experiments dealing with coarse aggregate concentration influence on the concrete strength and the structure of hardened cement paste and mortar of concrete are presented in the paper. Experiments were performed on concrete with dense coarse aggregate (crushed granite) which strength is more than strength of mortar and lightweight porous aggregate (expanded clay aggregate) with strength less than that of mortar. Physical and mechanical properties of concrete with dense coarse aggregate are presented in Table 1 and the concretes with the porous coarse aggregate in Table 2. The decrease of entrained air content with the increase of coarse aggregate concentration ϕσt were determined both for concretes with dense and porous coarse aggregate. The entrained air has a significant effect on concrete strength—1% of entrained air decreases the strength of concrete about 5% [11]. The influence of the coarse aggregate concentration on the compressive strength of concrete with the constant air content is presented in Figs 3 and 4. With the increase of coarse aggregate concentration the concrete strength decreases when the entrained air content in concrete is constant. The main reasons of the concrete strength reduction are the stress concentration and structural defects near the coarse aggregate. Coarse aggregate affects the structure of mortar. Dense coarse aggregate has negligible water absorption and does not change water content in mortar of concrete, and capillary porosity of mortar remains constant when the concentration of dense coarse aggregate ϕ st increases (Fig 5). Porous coarse aggregate (expanded clay aggregate) has large water absorption (more than 16%), therefore water content in mortar of concrete is reduced and capillary porosity of mortar is significantly reduced when the concentration of porous coarse aggregate ϕ st increases (Fig 5). The entrained air content in mortar with both dense and porous coarse aggregate decreases inverse proportionally to coarse aggregate concentration ϕ st (Fig 6). The investigations have shown that suitable selection of properties and volumetric concentration of coarse aggregate can reduce stress concentration in concrete and increase the concrete strength.


2020 ◽  
Vol 833 ◽  
pp. 228-232
Author(s):  
Md. Jihad Miah ◽  
Mohammad Shamim Miah ◽  
Anisa Sultana ◽  
Taukir Ahmed Shamim ◽  
Md Ashraful Alom

This work performs experimental investigations on concrete made with difference replacement percentage of first-class burnt clay brick aggregate (0, 10, 20, 30, 40, 50, 60, 80, and 100%) by steel slag (SS) aggregate. The aim is to evaluate the mechanical properties as well as durability performances, additionally, water absorption porosity test is performed to investigate the influence of steel slag aggregate on the durability of tested concrete. The experimental results have shown that the compressive strength was improved significantly due to the replacement of brick aggregate by steel slag aggregate. The crushing strength of concrete made with 100% steel slag aggregate has gained up to 70% more than the control concrete (100% brick aggregate). However, the porosity of concrete was reduced with the adding percentage of brick aggregate by steel slag aggregate which is consistent with the compressive strength results. Further, a quite good agreement between compressive strength and porosity was observed as well.


Author(s):  
Arun Kumar Chaudhary ◽  
Prakash Chandra Gope ◽  
Vinay K. Singh

AbstractIn this research, the suitability of almond shell and coconut fiber as a renewable agricultural residue for the manufacturing of biocomposite to be used as a replacement of wood was investigated. The use of agriculture waste as a reinforcement in composite may result in several environmental and socioeconomic benefits. A biocomposite containing different weight percentages of almond shell particle (10, 20, 30, 40, and 50 wt%) and coconut fiber (2, 4, and 6 wt%) mixed with 20 wt% almond shell particles was made using epoxy resin and 0.5 wt% tricresyl phosphate. The water absorption (WA), thickness swelling (TS), and morphology [scanning electron microscopy (SEM)] test of the biocomposite were determined. The rate of WA is less in saline water (SW) compared to rainwater (RW). The influence of the addition of coconut fiber is more compared with the almond shell particles for both the WA and TS.


2018 ◽  
Vol 203 ◽  
pp. 06001
Author(s):  
Muhammad Bilal Waris ◽  
Hussain Najwani ◽  
Khalifa Al-Jabri ◽  
Abdullah Al-Saidy

To manage tyre waste and conserve natural aggregate resource, this research investigates the use of waste tyre rubber as partial replacement of fine aggregates in non-structural concrete. The research used Taguchi method to study the influence of mix proportion, water-to-cement ratio and tyre rubber replacement percentage on concrete. Nine mixes were prepared with mix proportion of 1:2:4, 1:5:4 and 1:2.5:3; water-to-cement ratio of 0.25, 0.35 and 0.40 and rubber to fine aggregate replacement of 20%, 30% and 40%. Compressive strength and water absorption tests were carried out on 100 mm cubes. Compressive strength was directly proportional to the amount of coarse aggregate in the mix. Water-to-cement ratio increased the strength within the range used in the study. Strength was found to be more sensitive to the overall rubber content than the replacement ratio. Seven out of the nine mixes satisfied the minimum strength requirement for concrete blocks set by ASTM. Water absorption and density for all mixes satisfied the limits applicable for concrete blocks. The study indicates that mix proportions with fine to coarse aggregate ratio of less than 1.0 and w/c ratio around 0.40 can be used with tyre rubber replacements of up to 30 % to satisfy requirements for non-structural concrete.


Sign in / Sign up

Export Citation Format

Share Document