scholarly journals Saccharomyces uvarum yeast isolate consumes acetic acid during fermentation of high sugar juice and juice with high starting volatile acidity

OENO One ◽  
2020 ◽  
Vol 54 (2) ◽  
Author(s):  
Debra Inglis ◽  
Jennifer Kelly ◽  
Stephanie Van Dyk ◽  
Lisa Dowling ◽  
Gary Pickering ◽  
...  

Aim: A Saccharomyces uvarum isolate was assessed for its ability to metabolize acetic acid present in juice and during the fermentation of partially dehydrated grapes. The impact on other yeast metabolites was also compared using an S. uvarum isolate and an S. cerevisiae wine yeast. The upper limit of fruit concentration that allowed the S. uvarum isolate to ferment wines to < 5 g/L residual sugar was defined.Methods and results: Cabernet franc grapes were partially dehydrated to three different post-harvest sugar targets (24.5 °Brix, 26.0 °Brix, and 27.5 °Brix) along with non-dehydrated grapes (21.5 °Brix control). Musts from all treatments were vinified with either the S. uvarum isolate CN1, formerly identified as S. bayanus, or S. cerevisiae EC1118. All wines were successfully vinified to less than 5 g/L residual sugar. Fermentation kinetics between the two yeasts were similar for all wines other than 27.5 °Brix, where CN1 took three days longer. During fermentation with CN1, acetic acid peaked on day two, then decreased in concentration, resulting in final wine acetic acid lower than that measured on day two. Wines fermented with EC1118 showed an increase in acetic acid over the time-course of fermentation. Significantly lower wine oxidative compounds (acetic acid, acetaldehyde and ethyl acetate) and higher glycerol resulted in wine produced with CN1 in comparison to EC1118. Both yeasts produced comparable ethanol at each Brix level tested. Further studies showed that CN1 lowered acetic acid seven-fold from 0.48 g/L in juice to 0.07 g/L in wine whereas EC1118 reduced acetic acid to 0.18 g/L.Conclusions: The autochthonous S. uvarum yeast isolate successfully fermented partially dehydrated grapes to < 5 g/L sugar up to 27.5 ºBrix. The consumption rate of acetic acid was faster than its production during fermentation, resulting in low acetic acid, acetaldehyde and ethyl acetate in wine in comparison to a commercial S. cerevisiae yeast while consistently producing higher glycerol.Significance and impact of the study: The S. uvarum yeast isolate can metabolize acetic acid during fermentation to significantly lower acetic acid, ethyl acetate and acetaldehyde in wine. It can also reduce acetic acid by seven-fold from the starting juice to the finished wine, which could have potential application for managing sour rot arising in the vineyard or during the dehydration process in making appassimento-style wines.

1973 ◽  
Vol 28 (11-12) ◽  
pp. 662-674 ◽  
Author(s):  
Günther Schulz ◽  
Erich Hecker

Abstract The preparation of substituted cis,cis-muconic acids by oxidative ring scission of simple o-di-phenols with peracetic acid is investigated. Scission of pyrocatechol (1) to cis,cis-muconic acid (2) gives optimal yields, if acetic acid or ethyl acetate is used as solvent and if the solution is 15-20% with respect to sulfuric acid free peracetic acid comprising a one molar excess of oxidant. Under similar conditions, 3-tosylamino-pyrocatechol yields with peracetic acid the hitherto unknown α-tosylamino-cis,cis-muconic caid (18). 18 may be converted to α-tosylamino-traras,trans-muconic acid (19) by means of iodine, UV light or heating. From protocatechuic acid (4) under similar conditions not β-carboxy-cis,cis-muconic acid (5) is obtained, but rather β-carboxy-mucono-lactone (6 b, γ-carboxymethyl-β-carboxy-Δα-butenolide). As yet, this lactone has been accessible only from an isomer of β-carboxy-cis,cis-muconic acid, the latter being obtainable by enzymatic scission of protocatechuic acid (4). Steric effects are responsible for both, the formation of the free cis,cis-muconic acids 2 and 18 from pyrocatechol (1) and α-tosylamino-pyrocatechol, and the formation of the γ-lactone 6 b instead of β -carboxy-cis,cis-muconic acid by scission of protocatechuic acid (4). The time course of the reactions shows that - compared to pyrocatechol (1) - a 3-tosylamino-group enhances the peracetic acid scission, whereas a 4-carboxygroup as in 4 slows it down


1978 ◽  
Vol 24 (12) ◽  
pp. 2135-2138 ◽  
Author(s):  
K W Jackson

Abstract Each of 65 laboratories analyzed 10 whole-blood samples for erythrocyte protoporphyrin by one or more of several analytical procedures. These procedures were of two types: (a) extraction of protoporphyrin from the erythrocytes into ethyl acetate/acetic acid, re-extraction into hydrochloric acid, and fluorometric measurement; or (b) direct reading in a portable fluorometer (hematofluorometer), with no pretreatment of the blood sample. Interlaboratory correlation was generally poor, especially between laboratories using extraction procedures. Hematofluorometric results intercorrelated better, but they had a low bias as compared to the extraction approach. Nationwide standardization of the test is required to assure satisfactory interlaboratory performance and to identify laboratories whose results are sufficiently accurate to be used for interpretations according to guidelines set forth by the Center for Disease Control for erythrocyte protoporphyrin testing.


Author(s):  
Xue Yang ◽  
Yongling Liu ◽  
Tao Chen ◽  
Nana Wang ◽  
Hongmei Li ◽  
...  

Abstract Separation of natural compounds directly from the crude extract is a challenging work for traditional column chromatography. In the present study, an efficient method for separation of three main compounds from the crude extract of Dracocephalum tanguticum has been successfully established by high-speed counter-current chromatography (HSCCC). The crude extract was directly introduced into HSCCC by using dimethyl sulfoxide as cosolvent. Ethyl acetate/n-butyl alcohol/0.3% glacial acetic acid (4: 1: 5, v/v) system was used and three target compounds with purity higher than 80% were obtained. Preparative HPLC was used for further purification and three target compounds with purity higher than 98% were obtained. The compounds were identified as chlorogenic acid, pedaliin and pedaliin-6″-acetate.


2006 ◽  
Vol 290 (3) ◽  
pp. C719-C727 ◽  
Author(s):  
Frank C. Chen ◽  
Ozgur Ogut

The severity and duration of ischemia-reperfusion injury is hypothesized to play an important role in the ability of the heart subsequently to recover contractility. Permeabilized trabeculae were prepared from a rat model of ischemia-reperfusion injury to examine the impact on force generation. Compared with the control perfused condition, the maximum force (Fmax) per cross-sectional area and the rate of tension redevelopment of Ca2+-activated trabeculae fell by 71% and 44%, respectively, during ischemia despite the availability of a high concentration of ATP. The reduction in Fmax with ischemia was accompanied by a decline in fiber stiffness, implying a drop in the absolute number of attached cross bridges. However, the declines during ischemia were largely recovered after reperfusion, leading to the hypothesis that intrinsic, reversible posttranslational modifications to proteins of the contractile filaments occur during ischemia-reperfusion injury. Examination of thin-filament proteins from ischemic or ischemia-reperfused hearts did not reveal proteolysis of troponin I or T. However, actin was found to be glutathionylated with ischemia. Light-scattering experiments demonstrated that glutathionylated G-actin did not polymerize as efficiently as native G-actin. Although tropomyosin accelerated the time course of native and glutathionylated G-actin polymerization, the polymerization of glutathionylated G-actin still lagged native G-actin at all concentrations of tropomyosin tested. Furthermore, cosedimentation experiments demonstrated that tropomyosin bound glutathionylated F-actin with significantly reduced cooperativity. Therefore, glutathionylated actin may be a novel contributor to the diverse set of posttranslational modifications that define the function of the contractile filaments during ischemia-reperfusion injury.


2011 ◽  
Vol 396-398 ◽  
pp. 1536-1540
Author(s):  
Yan Hua Li ◽  
Lan Wei Zhang ◽  
Wei Jun Wang ◽  
Li Li Zhang ◽  
Xue Han ◽  
...  

The effect of reconstituted milk inoculation with Streptococcus thermophilus TM11 and Streptococcus thermophilus SP 1.1 on soft cheese volatiles was investigated. The impact flavors of 2,3-butanedione, 2,3-pentanedione, ethyl acetate, methyl butyrate, ethyl butyrate, butyl acetate and butyric acid were only detected in the fermented cheeses. Levels of diketones were higher in the cheeses fermented by mixed cultures than single culture, while levels of esters except ethyl acetate and butyl acetate showed an opposite tendency. There was significant difference in the levels of 2-hexenal and 2-nonenal among the cheeses. Other compounds originated from lipid oxidation, Strecker degradation, biosynthesis and forages were not significantly influenced by milk inoculation with Streptococcus thermophilus.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Michael McGregor ◽  
Shabana Din ◽  
Natalie Gude ◽  
Mark A Sussman

Rationale Cardiac stem cells (CSC) regulate cardiomyogenesis and support regenerative processes in the heart, but aging adversely affects stem cell repair capacity. Aging is a primary cause of impaired cardiac function characterized by accumulation of senescent cells. CSC senescence is associated with permanent growth arrest that decreases survival signaling and cellular replacement, inevitably diminishing the capacity of the heart to maintain tissue homeostasis. Therefore, promoting CSC growth may improve cardiac performance with age. Pim-1 kinase exhibits protective and proliferative effects in the myocardium but the role of Pim-1 in cardiac aging has not been thoroughly studied. Objective Demonstrate that Pim-1 promotes stem cell growth in the aged myocardium correlating with increased expression of centromere protein A (CENP-A), a kinetochore-associated protein known to support cell proliferation in numerous species and cell types. Methods & Results CENP-A expression levels were evaluated from murine myocardial tissue samples ranging in age from 11 days post coitum to 4 months of age with analysis by immunoblot as well as quantitative PCR. CENP-A expression was colocalized with c-kit as a marker of CSC by immunohistochemical labeling, revealing a decline in CENP-A expression over the time course of postnatal myocardial maturation. The impact of Pim-1 upon CENP-A level was assessed by comparative analysis of non-transgenic mice versus genetically modified transgenic mouse lines expressing either Pim-1 (wild type) or a dominant negative functionally dead Pim-1 mutant. Pim-1 overexpression increases persistence of CENP-A in CSCs with age, as well as the prevalence of cycling CSCs as marked by phosph-H3 expression, while the functionally dead mutant accelerates CENP-A diminution and decreases CSC proliferation. Conclusion CENP-A decline in c-kit positive cells with age provides intriguing evidence of a potential mechanism for the diminished capacity of CSCs to maintain tissue homeostasis. Pim-1 mitigates CENP-A diminution, demonstrating the promising potential of Pim-1 to promote cardiac growth and repair with age.


Sign in / Sign up

Export Citation Format

Share Document