scholarly journals Removal of Iron(II) Using Ni/Al Layered Double Hydroxide Intercalated with Keggin Ion

Molekul ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 149
Author(s):  
Aldes Lesbani Lesbani ◽  
Normah Normah ◽  
Neza Rahayu Palapa ◽  
Tarmizi Taher ◽  
Roy Andreas ◽  
...  

Layered double hydroxide (LDH) Ni/Al-NO3 was synthesized using a coprecipitation method under base condition following with intercalation using Keggin ion [a-SiW12O40]4- to form Ni/Al-[a-SiW12O40] LDH. The LDHs were characterized using XRD, FTIR, BET, and pHpzc analyses. Furthermore, LDHs were applied as adsorbent of iron(II) from aqueous solution. The adsorption process was studied through the effect of adsorption time, the concentration of iron(II), and temperature adsorption. The results show the interlayer distance of LDHs was increased from 7.408 Å to 10.533 Å after intercalation process. The adsorption of iron(II) on LDHs showed that adsorption of iron(II) on both LDHs follows pseudo first-order kinetic model with R2 value is close to one. The adsorption process was spontaneous, with adsorption capacity up to 36.496 mg g-1.

2020 ◽  
Vol 10 (1) ◽  
pp. 33-45 ◽  
Author(s):  
Neza Rahayu Palapa ◽  
Risfidian Mohadi ◽  
Addy Rachmat ◽  
Aldes Lesbani

Layered double hydroxide (LDH) Cu/Al and Cu/Cr had been used as adsorbent of malachite green (MG) in aqueous solution. The properties of Cu/Al and Cu/Cr LDHs were analyzed by X-ray diffraction, surface area analysis (BET) and FTIR spectroscopy. Adsorption study of MG was achieved at pH 9. Adsorption of MG follows the pseudo-second-order kinetic model. Langmuir isotherm was suitable for adsorption of MG on both LDH with a maximum adsorption capacity of 59.52 mg/g. The thermodynamic study indicated that the adsorption process is physisorption, spontaneous, and endothermic process.  Adsorption of MG onto LDHs involve the acid-base interaction between adsorbent and adsorbate.


2013 ◽  
Vol 650 ◽  
pp. 231-237
Author(s):  
Shu Kui Zhou ◽  
Guang Ming Zeng ◽  
Ying Jiu Liu ◽  
Hai Yang Jiang

The modified carboxymethyl cellulose(CMC) was prepared and explored to adsorb uranium(Ⅵ) ions from aqueous solution in a batch system. The experimental results showed that on the condition of reaction temperature 70~80°C, CMC 30%-35% (w/w), CMC to AA (w/w) of 10:2.5 and reaction time 3.5-4 h, the modification effect was the best. High removal efficient of U(Ⅵ) was obtained 97.1% at temperature of 25°C, pH value of 5.0, dosage of modified CMC 0.1 g/L and contact time of 60 min. It was found that the adsorption process was best described by Freundlich model and pseudo-first-order kinetic model (R2=0.9618), indicating that the adsorption is mainly on the surface of the modified CMC. Thermodynamics parameters of negative value of ΔG0 and positive value of ΔH0 revealed the spontaneity and endothermic nature of the adsorption. The adsorption is primarily due to physical adsorption.


2021 ◽  
Vol 6 (3) ◽  
pp. 209-217
Author(s):  
Neza Rahayu Palapa ◽  
Tarmizi Taher ◽  
Alfan Wijaya ◽  
Aldes Lesbani

Modification of Cu/Cr layered double hydroxides (LDHs) has been conducted by intercalation using Keggin type polyoxometalate [a-SiW12O40]4- to form CuCr-[a-SiW12O40]. The materials were analyzed by XRD, FTIR, and surface area analyses. Furthermore, materials were used as selectivity adsorbents of cationic dyes such as malachite green, rhodamine-B and methylene blue. The malachite green is more selective than others from an aqueous solution. The adsorption of malachite green showed that the adsorption capacity of CuCr-[a-SiW12O40] was higher than pristine LDHs. The adsorption process was followed pseudo second order kinetic model and Langmuir isotherm adsorption. The Qmax value of CuCr-[a-SiW12O40] reached 55.322 mg/g at 323 K after 100 minutes adsorption time. Thermodynamic parameters such as ΔG, ΔH and ΔS confirm that the adsorption process was endothermic, spontaneous, and more favorable at high temperatures. The intercalated material was higher structural stability toward reusability adsorbent than pristine LDHs.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Javier Paul Montalvo Andia ◽  
Lidia Yokoyama ◽  
Luiz Alberto Cesar Teixeira

In the present work, the equilibrium, thermodynamics, and kinetics of boron removal from aqueous solutions by the adsorption on commercial magnesium oxide powder were studied in a batch reactor. The adsorption efficiency of boron removal increases with temperature from 25°C to 50°C. The experimental results were fitted to the Langmuir, Freundlich, and Dubinin–Radushkevich (DR) adsorption isotherm models. The Freundlich model provided the best fitting, and the maximum monolayer adsorption capacity of MgO was 36.11 mg·g−1. In addition, experimental kinetic data interpretations were attempted for the pseudo-first-order kinetic model and pseudo-second-order kinetic model. The results show that the pseudo-second-order kinetic model provides the best fit. Such result suggests that the adsorption process seems to occur in two stages due to the two straight slopes obtained through the application of the pseudo-first-order kinetic model, which is confirmed by the adjustment of the results to the pseudo-second-order model. The calculated activation energy (Ea) was 45.5 kJ·mol−1, and the values calculated for ∆G°, ∆H°, and ∆S° were −4.16 kJ·mol−1, 21.7 kJ·mol−1, and 87.3 kJ·mol−1, respectively. These values confirm the spontaneous and endothermic nature of the adsorption process and indicated that the disorder increased at the solid-liquid interface. The results indicate that the controlling step of boron adsorption process on MgO is of a physical nature.


2021 ◽  
pp. 2151037
Author(s):  
Yu Meng ◽  
Qing Zhong ◽  
Arzugul Muslim

Because −NH2 and −NH− in poly-[Formula: see text]-phenylenediamine (P[Formula: see text]PD) can interact strongly with the empty orbitals of Cu to show unique electrochemical activity, P[Formula: see text]PD is suitable for the removal of Cu[Formula: see text] by electrochemical oxidation–reduction process. In this study, with P[Formula: see text]PD and its carbon dot composite (CDs/P[Formula: see text]PD) as working electrodes, the electrochemical reduction and removal of Cu[Formula: see text] in the aqueous solution were carried out with the potentiostatic method. According to effects of voltage, pH of the solution, initial concentration of Cu[Formula: see text], and electrochemical reduction time on the Cu[Formula: see text] removal, the Cu[Formula: see text] removal ratios of P[Formula: see text]PD and CDs/P[Formula: see text]PD were up to 64.69% and 73.34%, respectively, at −0.2 V and the optimal pH. Additionally, results showed that these processes were in line with the quasi-first order kinetic model. Both P[Formula: see text]PD and CDs/P[Formula: see text]PD showed good reproducibility in six cycles. After five times of repeated usage, the regeneration efficiencies of P[Formula: see text]PD and CDs/P[Formula: see text]PD dropped to 77.04% and 79.36%, respectively.


2018 ◽  
Vol 38 ◽  
pp. 02014
Author(s):  
Yu Zhang ◽  
Jian Gu ◽  
Mengqi Zhang

The wool-ball-like TiO2 microspheres on carbon fabric (TiO2-CF) and FTO substrates (TiO2-FTO) have been synthesized by a facile hydrothermal method in alkali environment, using commercial TiO2 (P25) as precursors. The XRD results indicate that the as-prepared TiO2 have good crystallinity. And the SEM images show that the wool-ball-like TiO2 microspheres with a diameter of 2-3 μm are composed of TiO2 nanowires, which have a diameter of ~50 nm. The photocatalytic behavior of the wool-ball-like TiO2 microspheres, TiO2-CF and TiO2-FTO under ultraviolet light was investigated by a pseudo first-order kinetic model, using methyl orange (MO) as pollutant. The wool-ball-like TiO2 microspheres obtained a degradation rate constant (Kap) of 6.91×10-3 min-1 . The Kap values of TiO2-FTO and TiO2-CF reach 13.97×10-3 min-1 and 11.80×10-3 min-1, which are 2.0 and 1.7 times higher than that of pristine wool-ball-like TiO2 microspheres due to the “sum effect” between TiO2 and substrates. This study offers a facile hydrothermal method to prepare wool-ball-like TiO2 microspheres on CF and FTO substrates, which will improve the recyclability of phtocatalysts and can be extended to other fields.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Juanjuan Zhao ◽  
Yujiao Sun ◽  
Fachao Wu ◽  
Minjian Shi ◽  
Xurui Liu

Antibiotic residues and antibiotic resistance genes (ARGs) pose a great threat to public health and food security via the horizontal transfer in the food production chain. Oxidative degradation of amoxicillin (AMO) in aqueous solution by thermally activated persulfate (TAP) was investigated. The AMO degradation followed a pseudo-first-order kinetic model at all tested conditions. The pseudo-first-order rate constants of AMO degradation well-fitted the Arrhenius equation when the reaction temperature ranged from 35°C to 60°C, with the apparent activate energy of 126.9 kJ·mol−1. High reaction temperature, high initial persulfate concentration, low pH, high Cl− concentration, and humic acid (HA) concentration increased the AMO degradation efficiency. The EPR test demonstrated that both ·OH and SO4·− were generated in the TAP system, and the radical scavenging test identified that the predominant reactive radical species were SO4·− in aqueous solution without adjusting the solution pH. In groundwater and drinking water, AMO degradation suggested that TAP could be a reliable technology for water remediation contaminated by AMO in practice.


2015 ◽  
Vol 71 (11) ◽  
pp. 1694-1700 ◽  
Author(s):  
ZiFang Chen ◽  
YongSheng Zhao ◽  
Qin Li

Gallic acid (GA) is a naturally occurring plant polyphenol compound. Experiments were conducted to study the kinetics and effects of pH, temperature, irradiation, and initial hexavalent chromium (Cr(VI)) concentration on Cr(VI) reduction by GA. Results indicated that Cr(VI) could be reduced to chromium oxide (Cr(III)) with GA in a wide range of pH values from 2.0 to 8.5. The reaction followed a pseudo-first-order kinetic model with respect to Cr(VI) and GA in acid conditions (pH 2.0–5.0). However, the reaction did not follow the pseudo-first-order kinetic model at pH 6.5 and 8.5. Removal efficiencies and reaction rate constants of Cr(VI) significantly increased with decreasing pH value and increasing temperature. The effect of irradiation on Cr(VI) reduction increased with increasing pH, and irradiation improved the removal efficiency of Cr(VI) by 11.29% at pH 6.5. At pH 2.0, nearly all molar ratios of GA required for the reduction of Cr(VI) were 1:2 (±0.1) under different initial Cr(VI) concentrations; however, the molar ratios of GA required for the reduction of Cr(VI) were 1:1.29, 1:1.43, and 1:1.69, respectively, when the initial Cr(VI) concentrations were 10, 25, and 50 mg/L at pH 5.5.


2021 ◽  
Vol 6 (2) ◽  
pp. 85-95
Author(s):  
Patimah Mega Syah Bahar Nur Siregar ◽  
Neza Rahayu Palapa ◽  
Alfan Wijaya ◽  
Erni Salasia Fitri ◽  
Aldes Lesbani

In this research, Ni/Al layered double hydroxide (LDH) was modified by using co-precipitation method to generate Ni/Al-graphite (Ni/Al-GF) and Ni/Al-biochar (Ni/Al-BC). The adsorbents were applied to remove Congo Red from aqueous solution. The obtained samples were characterized by using XRD, FTIR, BET and TG-DTA. The XRD diffraction pattern of Ni/Al LDH, Ni/Al-GF, and Ni/Al-BC presented the formation of composite with decreasing crystallinity. The surface area modified LDHs was higher than the pristine materials, which was obtained 15.106 m2/g, 21.595 m2/g and 438.942 m2/g for Ni/Al-LDH, Ni/Al-GF, Ni/Al-BC respectively. The adsorption of Congo Red on the materials was tested at diferent parameters and the results exhibited that Congo Red adsorption on LDHs were pseudo-first-order (PFO) kinetic, spontaneous, endothermic and followed Langmuir model. The adsorbents removed Congo Red by high performance stability with adsorption capacity was 116.297 mg/g for Ni/Al-GF and 312.500 mg/g for Ni/Al-BC. These adsorption capacity was higher than the pristine LDH (61.728 mg/g). The regeneration process which carried out for five cycles showed that Ni/Al-GF and Ni/Al-BC have stable structures as reuse adsorbents for Congo Red from aqueous solution.


2021 ◽  
Vol 30 ◽  
pp. 02010
Author(s):  
Irina Ryltsova ◽  
Evgenia Tarasenko ◽  
Olga Lebedeva

Layered double hydroxide containing Ni3+ (Mg/AlNi-LDH) was successfully synthesized by co-precipitation in an oxidizing media. The resulted product was characterized using X-ray diffraction, wavelength dispersive X-ray fluorescence spectrometry. The activity of Mg/AlNi-LDH in the process of photodegradation of Congo red dye using UV light irradiation was evaluated. The initial rate of photodegradation of the dye in the presence of LDH is 1.6 times higher than that of UV irradiated solution. The kinetic data obtained for photodegradation process can be adequately described by pseudo-first-order kinetic model. The presence of Mg/AlNi – LDH leads to increased photodegradation yield compared to destruction only by UV irradiation.


Sign in / Sign up

Export Citation Format

Share Document