scholarly journals Mathematical modeling of some features of gas hydrates dissociation

Author(s):  
E. P. Zaporozhets ◽  
N. A. Shostak

In the modern oil and gas industry, specialists often have to solve multifaceted problems associated with processes of dissociation of technogenic and natural gas hydrates. Known methods of calculation and dissociation studies mainly describe this process with the supply to heat hydrate. However, when using the method of pressure reduction for dissociation, hydrate metastability states are manifested - self-preservation and conservation effects, discovered by Russian and foreign researchers. Available in the literature descriptions of the effects of metastability were obtained as a result of experiments with hydrates from one-component gases and for specific thermobaric conditions. The existing dependencies for some hydrate systems do not apply to others, so that their direct application in solving practical problems, for example, with the extraction of natural gas or the elimination of man-made hydrates in a wide range of thermobaric conditions, is difficult. Therefore, the creation of a method for calculating the main parameters of the dissociation of hydrates from multicomponent gases is relevant. The article presents the developed physico-mathematical model of the features of hydrate dissociation process under isothermal pressure decrease of its environment. With the help of these models, the parameters of the hydrate dissociation process, including manifestations of their metastability states, are calculated. The mathematical dependencies connecting the parameters of the hydration dissociation process with the current parameters of the medium, as well as with the thermobaric conditions of the process of their formation (i.e. with their "history") can be used to solve practical problems of ensuring reliability and continuity of functioning systems of oil and gas industry. In addition, the obtained dependences can be used to develop promising reserves of hydrocarbons that are in the hydrate state in the depths and bottom sediments of the continental shelves, as well as to intensify oil and gas production using hydrate technologies.

Author(s):  
A. U. Muhammedov ◽  
◽  
A. В. Tasmaganbetov ◽  

The article describes the current state of the domestic oil and gas industry. The volume of crude oil and natural gas production in the oil and gas industry is analyzed. The analysis of the gross output of natural gas and oil production, including gas condensate by region, is given and carried out. The number of employees in the main activity is given. The average monthly salary of employees in the main activity of the industry is determined.


Author(s):  
A. U. MUHAMMEDOV ◽  
◽  
A. В. TASMAGANBETOV ◽  

The article describes the current state of the domestic oil and gas industry. The volume of crude oil and natural gas production in the oil and gas industry is analyzed. The analysis of the gross output of natural gas and oil production, including gas condensate by region, is given and carried out. The number of employees in the main activity is given. The average monthly salary of employees in the main activity of the industry is determined.


2020 ◽  
pp. 42-45
Author(s):  
J.A. Kerimov ◽  

The implementation of plastic details in various constructions enables to reduce the prime cost and labor intensity of machine and device manufacturing, decrease the weight of design and improve their quality and reliability at the same time. The studies were carried out with the aim of labor productivity increase and substitution of colored and black metals with plastic masses. For this purpose, the details with certain characteristics were selected for further implementation of developed technological process in oil-gas industry. The paper investigates the impact of cylinder and compression mold temperature on the quality parameters (shrinkage and hardness) of plastic details in oil-field equipment. The accessible boundaries of quality indicators of the details operated in the equipment of exploration, drilling and exploitation of oil and gas industry are studied in a wide range of mode parameters. The mathematic dependences between quality parameters (shrinkage and hardness) of the details on casting temperature are specified.


2021 ◽  
Author(s):  
Nouf AlJabri ◽  
Nan Shi

Abstract Nanoemulsions (NEs) are kinetically stable emulsions with droplet size on the order of 100 nm. Many unique properties of NEs, such as stability and rheology, have attracted considerable attention in the oil industry. Here, we review applications and studies of NEs for major upstream operations, highlighting useful properties of NEs, synthesis to render these properties, and techniques to characterize them. We identify specific challenges associated with large-scale applications of NEs and directions for future studies. We first summarize useful and unique properties of NEs, mostly arising from the small droplet size. Then, we compare different methods to prepare NEs based on the magnitude of input energy, i.e., low-energy and high-energy methods. In addition, we review techniques to characterize properties of NEs, such as droplet size, volume fraction of the dispersed phase, and viscosity. Furthermore, we discuss specific applications of NEs in four areas of upstream operations, i.e., enhanced oil recovery, drilling/completion, flow assurance, and stimulation. Finally, we identify challenges to economically tailor NEs with desired properties for large-scale upstream applications and propose possible solutions to some of these challenges. NEs are kinetically stable due to their small droplet size (submicron to 100 nm). Within this size range, the rate of major destabilizing mechanisms, such as coalescence, flocculation, and Ostwald ripening, is considerably slowed down. In addition, small droplet size yields large surface-to-volume ratio, optical transparency, high diffusivity, and controllable rheology. Similar to applications in other fields (food industry, pharmaceuticals, cosmetics, etc.), the oil and gas industry can also benefit from these useful properties of NEs. Proposed functions of NEs include delivering chemicals, conditioning wellbore/reservoir conditions, and improve chemical compatibility. Therefore, we envision NEs as a versatile technology that can be applied in a variety of upstream operations. Upstream operations often target a wide range of physical and chemical conditions and are operated at different time scales. More importantly, these operations typically consume a large amount of materials. These facts not only suggest efforts to rationally engineer properties of NEs in upstream applications, but also manifest the importance to economically optimize such efforts for large-scale operations. We summarize studies and applications of NEs in upstream operations in the oil and gas industry. We review useful properties of NEs that benefit upstream applications as well as techniques to synthesize and characterize NEs. More importantly, we identify challenges and opportunities in engineering NEs for large-scale operations in different upstream applications. This work not only focuses on scientific aspects of synthesizing NEs with desired properties but also emphasizes engineering and economic consideration that is important in the oil industry.


2019 ◽  
Vol 7 (11) ◽  
pp. 401 ◽  
Author(s):  
Zhaohui Hong ◽  
Dengfeng Fu ◽  
Wenbin Liu ◽  
Zefeng Zhou ◽  
Yue Yan ◽  
...  

Subsea pipelines are commonly employed in the offshore oil and gas industry to transport high-pressure and high-temperature (HPHT) hydrocarbons. The phenomenon of pipeline walking is a topic that has drawn a great deal of attention, and is related to the on-bottom stability of the pipeline, such as directional accumulation with respect to axial movement, which can threaten the security of the entire pipeline system. An accurate assessment of pipeline walking is therefore necessary for offshore pipeline design. This paper reports a comprehensive suite of numerical analyses investigating the performance of pipeline walking, with a focus on the effect of increasing axial soil resistance on walking rates. Three walking-driven modes (steel catenary riser (SCR) tension, downslope, and thermal transient) are considered, covering a wide range of influential parameters. The variation in walking rate with respect to the effect of increased soil friction is well reflected in the development of the effective axial force (EAF) profile. A method based on the previous analytical solution is proposed for predicting the accumulated walking rates throughout the entire service life, where the concept of equivalent soil friction is adopted.


2020 ◽  
Vol 60 (2) ◽  
pp. 537
Author(s):  
Andrew Taylor

Associated with the growth of Australia’s oil and gas industry over the past 40 years, our oceans currently host oil and gas production and transportation infrastructure that will cost ~AU$30 billion to decommission. National Energy Resources Australia (NERA) is one of six industry growth centres (IGC) funded by the Australian Government. NERA is investigating opportunities for transforming the way that Australia manages its upcoming decommissioning activities. In 2019, NERA undertook a series of stakeholder consultations to refresh our understanding of Australia’s decommissioning outlook. Feedback was received through more than 20 interviews and follow-up surveys with the service sector, operators, research organisations, regulators and consultants. This paper highlights the outcomes of this review and NERA’s view on opportunities to position Australia favourably to manage decommissioning in a way that maximises benefits.


2015 ◽  
Vol 55 (2) ◽  
pp. 425
Author(s):  
Camis Smith

Advancing Aboriginal participation in the workplace comes with its challenges, and those experienced in the oil and gas industry are unique. Barriers to participation need to be regularly evaluated and addressed for success. Although Chevron Australia's focus on Aboriginal employment is fairly recent, it receives strong internal support from senior and corporate leadership. It will be important in the future to further this commitment and build ownership throughout the organisation to achieve long-term results and meet business needs and skills gaps. Camis Smith, Chevron Australia's Aboriginal Employment Strategy Manager, will share Chevron's experiences, lessons and challenges in advancing Aboriginal participation in the workplace, and reinforce its reputation as an employer of choice. Chevron is one of the world's leading integrated energy companies and through its Australian subsidiaries, has been present in Australia for more than 60 years. With the ingenuity and commitment of more than 4,000 people, Chevron Australia leads the development of the Gorgon and Wheatstone natural gas projects, and has been operating Australia's largest onshore oilfield on Barrow Island for more than 45 years.


2012 ◽  
Vol 479-481 ◽  
pp. 1129-1132
Author(s):  
Wang Ming Bo

This paper gives an overview of erosion mechanisms in elbows in oil and gas production systems. The nature of the erosion process itself makes it very difficult to develop some definitive methods or models to prevent or predict the erosion in elbows in all conditions. This paper provides a review of the subject which will help petroleum engineers to handle the erosion problems in oil and gas industry. This review is given of different erosion mechanisms connected with sand erosion and the factors that influence them, and then the review goes on to look at particulate erosion in elbows in more details. Conclusions are then drawn based on the above analyses.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Mohammad Reza Khoshravan Azar ◽  
Ali Akbar Emami Satellou ◽  
Mohammad Shishesaz ◽  
Bahram Salavati

Given the increasing use of composite materials in various industries, oil and gas industry also requires that more attention should be paid to these materials. Furthermore, due to variation in choice of materials, the materials needed for the mechanical strength, resistance in critical situations such as fire, costs and other priorities of the analysis carried out on them and the most optimal for achieving certain goals, are introduced. In this study, we will try to introduce appropriate choice for use in the natural gas transmission composite pipelines. Following a 4-layered filament-wound (FW) composite pipe will consider an offer our analyses under internal pressure. The analyses’ results will be calculated for different combinations of angles 15 deg, 30 deg, 45 deg, 55 deg, 60 deg, 75 deg, and 80 deg. Finally, we will compare the calculated values and the optimal angle will be gained by using the Approximation methods. It is explained that this layering is as the symmetrical.


Sign in / Sign up

Export Citation Format

Share Document