scholarly journals Relationship between rainfall and streamflow in the La Plata Basin: annual cycles, interdecadal and multidecadal variability

2021 ◽  
Author(s):  
Carla Gulizia ◽  
Inés Camilloni

The aim of this study is to understand the interaction between rainfall and streamflow variability in the La Plata basin (LPB) along a wide range of timescales. LPB is divided in six sub-basins associated to the main rivers (Paraguay, Paraná, Uruguay and Iguazú). The amplification of the streamflow response is addressed in order to evaluate to what extent river discharges variability can be explained by precipitation fluctuations. Mean annual cycles corresponding to 1931-2010 period and to each of the decades comprising it are analyzed. Streamflow interdecadal changes are observed in most of the gauging stations. In addition, an 11-year moving-average filter is applied to the normalized annual time series. Results exhibit a considerable higher percentage of explained variance in the streamflow filtered series, highlighting the predominance of low frequency variability present in these compared to those of precipitation. Consistently, river discharges show higher spectral density over decadal/interdecadal frequencies compared to precipitation analysis. A simple statistical approach to advance in the understanding of the complex rainfall-streamflow physical relationship is addressed with promising results: streamflow spectrums are derived directly from the precipitation spectrum, transformed by a 'basin' operator, characteristic of the basin itself. It is assumed that watersheds acts on precipitation as spatio-temporal integrators operating as low-pass filters, like a moving average. Streamflow power spectrums are simulated assuming that the underlying process is an autoregressive moving average (ARMA). Considering as the only input the sub-basin areal-averaged precipitation timeseries, results show that simulated streamflow spectrums fits effectively the observations at the sub-basin scale.

2019 ◽  
Vol 29 (07) ◽  
pp. 2050109
Author(s):  
Yan Li ◽  
Yong Liang Li

A novel capacitance multiplier is proposed to implement an ultra-low-frequency filter for physiological signal processing in biomedical applications. With the proposed multiplier, a simple first-order low-pass filter achieves a [Formula: see text]3-dB frequency of 33.4[Formula: see text]μHz with a 1-pF capacitance and a 20[Formula: see text]k[Formula: see text] resistance. This corresponds to a multiplication factor of as large as [Formula: see text]. By changing the controlling terminal, the [Formula: see text]3-dB frequency can be tuned in a wide range of 33.4[Formula: see text]μHz–6.3[Formula: see text]kHz.


2018 ◽  
pp. 379-396
Author(s):  
Akash Kumar Bhoi ◽  
Karma Sonam Sherpa ◽  
Bidita Khandelwal

The filtering techniques are primarily used for preprocessing of the signal and have been implemented in a wide variety of systems for Electrocardiogram (ECG) analysis. It should be remembered that filtering of the ECG is contextual and should be performed only when the desired information remains undistorted. Removal of baseline drift is required in order to minimize changes in beat morphology that do not have cardiac origin, which is especially important when subtle changes in the ‘‘low-frequency'' ST segment are analyzed for the diagnosis of ischemia. Here, for baseline drift removal different filters such as Median, Low Pass Butter Worth, Finite Impulse Response (FIR), Weighted Moving Average and Stationary Wavelet Transform (SWT) are implemented. The fundamental properties of signal before and after baseline drift removal are statistically analyzed.


2014 ◽  
Vol 493 ◽  
pp. 343-348 ◽  
Author(s):  
Bu Yung Kosasih ◽  
Wahyu Caesarendra ◽  
Kiet Tieu ◽  
Achmad Widodo ◽  
Craig A.S. Moodie ◽  
...  

In many applications, degradation of bearing conditions is usually monitored by changes in time-domain features. However, in low speed (< 10 rpm) slewing bearing, these changes are not easily detected because of the low energy and low frequency of the vibration. To overcome this problem, a combined low pass filter (LPF) and adaptive line enhancer (ALE) signal pre-conditioning method is used. Time-domain features such as root mean square (RMS), skewness and kurtosis are extracted from the output signal of the combined LPF and ALE method. The extracted features show accurate information about the incipient of fault as compared to extracted features from the original vibration signal. This information then triggers the prognostic algorithm to predict the remaining lifetime of the bearing. The algorithm used to determine the trend of the non-stationary data is auto-regressive integrated moving average (ARIMA).


Author(s):  
Akash Kumar Bhoi ◽  
Karma Sonam Sherpa ◽  
Bidita Khandelwal

The filtering techniques are primarily used for preprocessing of the signal and have been implemented in a wide variety of systems for Electrocardiogram (ECG) analysis. It should be remembered that filtering of the ECG is contextual and should be performed only when the desired information remains undistorted. Removal of baseline drift is required in order to minimize changes in beat morphology that do not have cardiac origin, which is especially important when subtle changes in the ‘‘low-frequency'' ST segment are analyzed for the diagnosis of ischemia. Here, for baseline drift removal different filters such as Median, Low Pass Butter Worth, Finite Impulse Response (FIR), Weighted Moving Average and Stationary Wavelet Transform (SWT) are implemented. The fundamental properties of signal before and after baseline drift removal are statistically analyzed.


2009 ◽  
Vol 23 (4) ◽  
pp. 191-198 ◽  
Author(s):  
Suzannah K. Helps ◽  
Samantha J. Broyd ◽  
Christopher J. James ◽  
Anke Karl ◽  
Edmund J. S. Sonuga-Barke

Background: The default mode interference hypothesis ( Sonuga-Barke & Castellanos, 2007 ) predicts (1) the attenuation of very low frequency oscillations (VLFO; e.g., .05 Hz) in brain activity within the default mode network during the transition from rest to task, and (2) that failures to attenuate in this way will lead to an increased likelihood of periodic attention lapses that are synchronized to the VLFO pattern. Here, we tested these predictions using DC-EEG recordings within and outside of a previously identified network of electrode locations hypothesized to reflect DMN activity (i.e., S3 network; Helps et al., 2008 ). Method: 24 young adults (mean age 22.3 years; 8 male), sampled to include a wide range of ADHD symptoms, took part in a study of rest to task transitions. Two conditions were compared: 5 min of rest (eyes open) and a 10-min simple 2-choice RT task with a relatively high sampling rate (ISI 1 s). DC-EEG was recorded during both conditions, and the low-frequency spectrum was decomposed and measures of the power within specific bands extracted. Results: Shift from rest to task led to an attenuation of VLFO activity within the S3 network which was inversely associated with ADHD symptoms. RT during task also showed a VLFO signature. During task there was a small but significant degree of synchronization between EEG and RT in the VLFO band. Attenuators showed a lower degree of synchrony than nonattenuators. Discussion: The results provide some initial EEG-based support for the default mode interference hypothesis and suggest that failure to attenuate VLFO in the S3 network is associated with higher synchrony between low-frequency brain activity and RT fluctuations during a simple RT task. Although significant, the effects were small and future research should employ tasks with a higher sampling rate to increase the possibility of extracting robust and stable signals.


2016 ◽  
Vol 68 (2-3) ◽  
pp. 243-255 ◽  
Author(s):  
EM de Jesus ◽  
RP da Rocha ◽  
MS Reboita ◽  
M Llopart ◽  
LM Mosso Dutra ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 598
Author(s):  
Massimiliano Pau ◽  
Bruno Leban ◽  
Michela Deidda ◽  
Federica Putzolu ◽  
Micaela Porta ◽  
...  

The majority of people with Multiple Sclerosis (pwMS), report lower limb motor dysfunctions, which may relevantly affect postural control, gait and a wide range of activities of daily living. While it is quite common to observe a different impact of the disease on the two limbs (i.e., one of them is more affected), less clear are the effects of such asymmetry on gait performance. The present retrospective cross-sectional study aimed to characterize the magnitude of interlimb asymmetry in pwMS, particularly as regards the joint kinematics, using parameters derived from angle-angle diagrams. To this end, we analyzed gait patterns of 101 pwMS (55 women, 46 men, mean age 46.3, average Expanded Disability Status Scale (EDSS) score 3.5, range 1–6.5) and 81 unaffected individuals age- and sex-matched who underwent 3D computerized gait analysis carried out using an eight-camera motion capture system. Spatio-temporal parameters and kinematics in the sagittal plane at hip, knee and ankle joints were considered for the analysis. The angular trends of left and right sides were processed to build synchronized angle–angle diagrams (cyclograms) for each joint, and symmetry was assessed by computing several geometrical features such as area, orientation and Trend Symmetry. Based on cyclogram orientation and Trend Symmetry, the results show that pwMS exhibit significantly greater asymmetry in all three joints with respect to unaffected individuals. In particular, orientation values were as follows: 5.1 of pwMS vs. 1.6 of unaffected individuals at hip joint, 7.0 vs. 1.5 at knee and 6.4 vs. 3.0 at ankle (p < 0.001 in all cases), while for Trend Symmetry we obtained at hip 1.7 of pwMS vs. 0.3 of unaffected individuals, 4.2 vs. 0.5 at knee and 8.5 vs. 1.5 at ankle (p < 0.001 in all cases). Moreover, the same parameters were sensitive enough to discriminate individuals of different disability levels. With few exceptions, all the calculated symmetry parameters were found significantly correlated with the main spatio-temporal parameters of gait and the EDSS score. In particular, large correlations were detected between Trend Symmetry and gait speed (with rho values in the range of –0.58 to –0.63 depending on the considered joint, p < 0.001) and between Trend Symmetry and EDSS score (rho = 0.62 to 0.69, p < 0.001). Such results suggest not only that MS is associated with significantly marked interlimb asymmetry during gait but also that such asymmetry worsens as the disease progresses and that it has a relevant impact on gait performances.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yamila P. Cardoso ◽  
Luiz Jardim de Queiroz ◽  
Ilham A. Bahechar ◽  
Paula E. Posadas ◽  
Juan I. Montoya-Burgos

AbstractDistribution history of the widespread Neotropical genus Hypostomus was studied to shed light on the processes that shaped species diversity. We inferred a calibrated phylogeny, ancestral habitat preference, ancestral areas distribution, and the history of dispersal and vicariance events of this genus. The phylogenetic and distribution analyses indicate that Hypostomus species inhabiting La Plata Basin do not form a monophyletic clade, suggesting that several unrelated ancestral species colonized this basin in the Miocene. Dispersal to other rivers of La Plata Basin started about 8 Mya, followed by habitat shifts and an increased rate of cladogenesis. Amazonian Hypostomus species colonized La Plata Basin several times in the Middle Miocene, probably via the Upper Paraná and the Paraguay rivers that acted as dispersal corridors. During the Miocene, La Plata Basin experienced marine incursions, and geomorphological and climatic changes that reconfigured its drainage pattern, driving dispersal and diversification of Hypostomus. The Miocene marine incursion was a strong barrier and its retraction triggered Hypostomus dispersal, increased speciation rate and ecological diversification. The timing of hydrogeological changes in La Plata Basin coincides well with Hypostomus cladogenetic events, indicating that the history of this basin has acted on the diversification of its biota.


2021 ◽  
Author(s):  
Yanina F. Briñoccoli ◽  
Luiz Jardim de Queiroz ◽  
Sergio Bogan ◽  
Ariel Paracampo ◽  
Paula E. Posadas ◽  
...  

Aerospace ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 148
Author(s):  
Vittorio Giannetti ◽  
Manuel Martín Saravia ◽  
Luca Leporini ◽  
Simone Camarri ◽  
Tommaso Andreussi

One of the main oscillatory modes found ubiquitously in Hall thrusters is the so-called breathing mode. This is recognized as a relatively low-frequency (10–30 kHz), longitudinal oscillation of the discharge current and plasma parameters. In this paper, we present a synergic experimental and numerical investigation of the breathing mode in a 5 kW-class Hall thruster. To this aim, we propose the use of an informed 1D fully-fluid model to provide augmented data with respect to available experimental measurements. The experimental data consists of two datasets, i.e., the discharge current signal and the local near-plume plasma properties measured at high-frequency with a fast-diving triple Langmuir probe. The model is calibrated on the discharge current signal and its accuracy is assessed by comparing predictions against the available measurements of the near-plume plasma properties. It is shown that the model can be calibrated using the discharge current signal, which is easy to measure, and that, once calibrated, it can predict with reasonable accuracy the spatio-temporal distributions of the plasma properties, which would be difficult to measure or estimate otherwise. Finally, we describe how the augmented data obtained through the combination of experiments and calibrated model can provide insight into the breathing mode oscillations and the evolution of plasma properties.


Sign in / Sign up

Export Citation Format

Share Document