scholarly journals Development of Sliding Mode Controller for A Modified Boost Cuk Converter Configuration

Author(s):  
Sanjeevikumar Padmanaban ◽  
Emre Ozsoy ◽  
Viliam Fedák

This paper introduces a sliding mode control (SMC) based equivalent control method to a novel high output gain Cuk converter. An additional inductor and capacitor improves the efficiency and output gain of the classical Cuk converter. Classical PI controllers are widely used in DC-DC converters. However, it is a very challenging task to design a single PI controller operating in different load and disturbances. SMC based equivalent control method which achieves a robust operation in a wide operation range is also proposed. Switching frequency is kept constant in appropriate interval in different loading and disturbance conditions by implementing a dynamic hysteresis control method. Numerical simulations conducted on Matlab/Simulink confirm the accuracy of analytical analysis of high output gain modified Cuk converter. In addition, proposed equivalent control method is validated in different perturbations to demonstrate the robust operation in wide operation range.

2014 ◽  
Vol 670-671 ◽  
pp. 683-686
Author(s):  
Xiao Juan Song ◽  
Bao Zeng Yue

This paper presents the analysis of the spacecraft with fuel sloshing during attitude maneuver. The fuzzy sliding mode controller is designed for a simplified model of the spacecraft. The controller includes an equivalent control term, a sliding controller, and an optimal controller by adaptive fuzzy algorithm for perturbation parameters. Extensively numerical simulations are carried to verify effect of the control method in this paper and the numerical results show the good performance and better effectiveness for the fuel-filled spacecraft large attitude maneuver.


2020 ◽  
pp. 107754632098244
Author(s):  
Hamid Razmjooei ◽  
Mohammad Hossein Shafiei ◽  
Elahe Abdi ◽  
Chenguang Yang

In this article, an innovative technique to design a robust finite-time state feedback controller for a class of uncertain robotic manipulators is proposed. This controller aims to converge the state variables of the system to a small bound around the origin in a finite time. The main innovation of this article is transforming the model of an uncertain robotic manipulator into a new time-varying form to achieve the finite-time boundedness criteria using asymptotic stability methods. First, based on prior knowledge about the upper bound of uncertainties and disturbances, an innovative finite-time sliding mode controller is designed. Then, the innovative finite-time sliding mode controller is developed for finite-time tracking of time-varying reference signals by the outputs of the system. Finally, the efficiency of the proposed control laws is illustrated for serial robotic manipulators with any number of links through numerical simulations, and it is compared with the nonsingular terminal sliding mode control method as one of the most powerful finite-time techniques.


2011 ◽  
Vol 216 ◽  
pp. 96-100
Author(s):  
Jing Jun Zhang ◽  
Wei Sha Han ◽  
Li Ya Cao ◽  
Rui Zhen Gao

A sliding mode controller for semi-active suspension system of a quarter car is designed with sliding model varying structure control method. This controller chooses Skyhook as a reference model, and to force the tracking error dynamics between the reference model and the plant in an asymptotically stable sliding mode. An equal near rate is used to improve the dynamic quality of sliding mode motion. Simulation result shows that the stability of performance of the sliding-mode controller can effectively improve the driving smoothness and safety.


2017 ◽  
Vol 26 (11) ◽  
pp. 1750175
Author(s):  
Changyuan Chang ◽  
Chao Hong ◽  
Yang Xu ◽  
Hailong Sun ◽  
Yao Chen

A constant voltage AC–DC converter based on the digital assistant technology is proposed in this paper, which has the advantage of high output precision. In this paper, a novel digital exponential wave generator is adopted in Constant Voltage (CV) mode to replace the normal triangle waveform to obtain a wider range of switching frequency, increasing the accuracy of output voltage under light load. The control chip is implemented based on NEC 1[Formula: see text][Formula: see text]m 5[Formula: see text]V/40[Formula: see text]V HVCMOS process, and a 5[Formula: see text]V/1.2[Formula: see text]A prototype has been built to verify the proposed control method. In PFM mode the deviation of output voltage is within [Formula: see text]% and the load regulation is [Formula: see text]%. Meanwhile, when the load jumps from light to heavy, the minimum output voltage could be maintained above 4.16[Formula: see text]V.


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881527 ◽  
Author(s):  
Xudong Liu ◽  
Ke Li

A novel speed control method based on sliding mode control and disturbance observer is studied for permanent magnet synchronous motor drives. Different from the conventional speed and current cascade control structure in the field-oriented vector control, the new controller adopts the single-loop control structure, in which the speed and quadrate axes current controllers are combined together. First, a multiple-surface sliding mode controller is designed for the speed control system of permanent magnet synchronous motor. Although the sliding mode controller has the strong robustness for the matched disturbance in the system, it still cannot deal with mismatched disturbance effectively, such as external load disturbance and some parameter variations. Thus, the disturbance observer is introduced to estimate the disturbance in the motor, which is designed by combining the proposed sliding mode controller. Finally, the effectiveness is tested under various conditions by both simulation and experiment. The results show that the designed controller has the fast transient response and robustness under different operating conditions.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 853 ◽  
Author(s):  
Abdul Yasin ◽  
Muhammad Ashraf ◽  
Aamer Bhatti

The key issue in the implementation of the Sliding Mode Control (SMC) in analogue circuits and power electronic converters is its variable switching frequency. The drifting frequency causes electromagnetic compatibility issues and also adversely affect the efficiency of the converter, because the proper size of the inductor and the capacitor depends upon the switching frequency. Pulse Width Modulation based SMC (PWM-SMC) offers the solution, however, it uses either boundary layer approach or employs pulse width modulation of the ideal equivalent control signal. The first technique compromises the performance within the boundary layer, while the latter may not possess properties like robustness and order reduction due to the absence of the discontinuous function. In this research, a novel approach to fix the switching frequency in SMC is proposed, that employs a low pass filter to extract the equivalent control from the discontinuous function, such that the performance and robustness remains intact. To benchmark the experimental observations, a comparison with existing double integral type PWM-SMC is also presented. The results confirm that an improvement of 20% in the rise time and 25.3% in the settling time is obtained. The voltage sag during step change in load is reduced to 42.86%, indicating the increase in the robustness. The experiments prove the hypothesis that a discontinuous function based fixed frequency SMC performs better in terms of disturbances rejection as compared to its counterpart based solely on ideal equivalent control.


Sign in / Sign up

Export Citation Format

Share Document