scholarly journals Functional Expression and Characterization of the Recombinant N-acetyl-glucosamine/N-acetyl-galactosamine-Specific Marine Algal Lectin BPL3

Author(s):  
Hyun-ju Hwang ◽  
Jin-Woo Han ◽  
Gwang Hoon Kim ◽  
Jong Won Han

Lectins, characterized by their carbohydrate-binding ability, have an extensive practical application. However, their industrial use is limited by low yields, and few active recombinant lectins have been reported. In this study, the algal lectin BPL-3 (Bryopsis plumosa lectin 3) was successfully produced using a bacterial expression system, BL21(DE3), with an artificial repeated structure (dimeric construct). Recombinant dimeric BPL3 (rD2BPL3) was confirmed by LC-MS/MS spectrometry. Expression efficiency was greater for the construct with the repeat structure (rD2BPL3) than the monomeric form (rD1BPL3). Optimal conditions for expression were 1 mM IPTG at 20 °C. Recombinant lectin was purified under denaturing conditions and refolded by the flash dilution method. Recombinant BPL3 was solubilized in 1× PBS containing 2 M urea. rD2BPL3 showed strong hemagglutination activity using human erythrocytes, similar to that of native BPL3. rD2BPL3 had a similar sugar specificity to that of the native protein, i.e., to N-acetyl-glucosamine (GlcNAc) and N-acetyl-galactosamine (GalNAc). Glycan array results showed that recombinant BPL3 and native BPL3 exhibited different binding properties. Both showed weak binding activity to α-Man-Sp. Native BPL3 showed strong binding specificity to the alpha conformation of amino sugars, and rD2BPL3 had binding activity to the beta conformation. The process developed in this study was suitable for the quality-controlled production of high amounts of soluble recombinant lectins.

Biomolecules ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 146 ◽  
Author(s):  
Hyun-Ju Hwang ◽  
Jin-Woo Han ◽  
Hancheol Jeon ◽  
Jong Han

Lectin is an important protein in medical and pharmacological applications. Impurities in lectin derived from natural sources and the generation of inactive proteins by recombinant technology are major obstacles for the use of lectins. Expressing recombinant lectin with a tandem repeat structure can potentially overcome these problems, but few studies have systematically examined this possibility. This was investigated in the present study using three distinct forms of recombinant mannose-binding lectin from Bryopsis plumosa (BPL2)—i.e., the monomer (rD1BPL2), as well as the dimer (rD2BPL2), and tetramer (rD4BPL2) arranged as tandem repeats. The concentration of the inducer molecule isopropyl β-D-1-thiogalactopyranoside and the induction time had no effect on the efficiency of the expression of each construct. Of the tested constructs, only rD4BPL2 showed hemagglutination activity towards horse erythrocytes; the activity of towards the former was 64 times higher than that of native BPL2. Recombinant and native BPL2 showed differences in carbohydrate specificity; the activity of rD4BPL2 was inhibited by the glycoprotein fetuin, whereas that of native BPL2 was also inhibited by d-mannose. Our results indicate that expression as tandem repeat sequences can increase the efficiency of lectin production on a large scale using a bacterial expression system.


2009 ◽  
Vol 2009 ◽  
pp. 1-6 ◽  
Author(s):  
Vicente P. T. Pinto ◽  
Henri Debray ◽  
Danuta Dus ◽  
Edson H. Teixeira ◽  
Taianá Maia de Oliveira ◽  
...  

The carbohydrate-binding activity of the algal lectins from the closely related red marine algal species Bryothamnion triquetrum (BTL) and Bryothamnion seaforthii (BSL) was used to differentiate human colon carcinoma cell variants with respect to their cell membrane glyco-receptors. These lectins interacted with the cells tested in a dose-dependent manner. Moreover, the fluorescence spectra of both lectins clearly differentiated the cells used as shown by FACS profiles. Furthermore, as observed by confocal microscopy, BTL and BSL bound to cell surface glycoproteins underwent intense internalization, which makes them possible tools in targeting strategies.


2002 ◽  
Vol 69 ◽  
pp. 59-72 ◽  
Author(s):  
Kurt Drickamer ◽  
Andrew J. Fadden

Many biological effects of complex carbohydrates are mediated by lectins that contain discrete carbohydrate-recognition domains. At least seven structurally distinct families of carbohydrate-recognition domains are found in lectins that are involved in intracellular trafficking, cell adhesion, cell–cell signalling, glycoprotein turnover and innate immunity. Genome-wide analysis of potential carbohydrate-binding domains is now possible. Two classes of intracellular lectins involved in glycoprotein trafficking are present in yeast, model invertebrates and vertebrates, and two other classes are present in vertebrates only. At the cell surface, calcium-dependent (C-type) lectins and galectins are found in model invertebrates and vertebrates, but not in yeast; immunoglobulin superfamily (I-type) lectins are only found in vertebrates. The evolutionary appearance of different classes of sugar-binding protein modules parallels a development towards more complex oligosaccharides that provide increased opportunities for specific recognition phenomena. An overall picture of the lectins present in humans can now be proposed. Based on our knowledge of the structures of several of the C-type carbohydrate-recognition domains, it is possible to suggest ligand-binding activity that may be associated with novel C-type lectin-like domains identified in a systematic screen of the human genome. Further analysis of the sequences of proteins containing these domains can be used as a basis for proposing potential biological functions.


2021 ◽  
Vol 22 (11) ◽  
pp. 5639
Author(s):  
Nikolai Huwa ◽  
Oliver H. Weiergräber ◽  
Christian Kirsch ◽  
Ulrich Schaffrath ◽  
Thomas Classen

The monocot chimeric jacalin OsJAC1 from Oryza sativa consists of a dirigent and a jacalin-related lectin domain. The corresponding gene is expressed in response to different abiotic and biotic stimuli. However, there is a lack of knowledge about the basic function of the individual domains and their contribution to the physiological role of the entire protein. In this study, we have established a heterologous expression in Escherichia coli with high yields for the full-length protein OsJAC1 as well as its individual domains. Our findings showed that the secondary structure of both domains is dominated by β-strand elements. Under reducing conditions, the native protein displayed clearly visible transition points of thermal unfolding at 59 and 85 °C, which could be attributed to the lectin and the dirigent domain, respectively. Our study identified a single carbohydrate-binding site for each domain with different specificities towards mannose and glucose (jacalin domain), and galactose moieties (dirigent domain), respectively. The recognition of different carbohydrates might explain the ability of OsJAC1 to respond to different abiotic and biotic factors. This is the first report of specific carbohydrate-binding activity of a DIR domain, shedding new light on its function in the context of this monocot chimeric jacalin.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masuzu Kikuchi ◽  
Keiichi Kojima ◽  
Shin Nakao ◽  
Susumu Yoshizawa ◽  
Shiho Kawanishi ◽  
...  

AbstractMicrobial rhodopsins are photoswitchable seven-transmembrane proteins that are widely distributed in three domains of life, archaea, bacteria and eukarya. Rhodopsins allow the transport of protons outwardly across the membrane and are indispensable for light-energy conversion in microorganisms. Archaeal and bacterial proton pump rhodopsins have been characterized using an Escherichia coli expression system because that enables the rapid production of large amounts of recombinant proteins, whereas no success has been reported for eukaryotic rhodopsins. Here, we report a phylogenetically distinct eukaryotic rhodopsin from the dinoflagellate Oxyrrhis marina (O. marina rhodopsin-2, OmR2) that can be expressed in E. coli cells. E. coli cells harboring the OmR2 gene showed an outward proton-pumping activity, indicating its functional expression. Spectroscopic characterization of the purified OmR2 protein revealed several features as follows: (1) an absorption maximum at 533 nm with all-trans retinal chromophore, (2) the possession of the deprotonated counterion (pKa = 3.0) of the protonated Schiff base and (3) a rapid photocycle through several distinct photointermediates. Those features are similar to those of known eukaryotic proton pump rhodopsins. Our successful characterization of OmR2 expressed in E. coli cells could build a basis for understanding and utilizing eukaryotic rhodopsins.


1994 ◽  
Vol 14 (10) ◽  
pp. 6552-6560
Author(s):  
S K Rabindran ◽  
J Wisniewski ◽  
L Li ◽  
G C Li ◽  
C Wu

The intracellular level of free heat shock proteins, in particular the 70-kDa stress protein family, has been suggested to be the basis of an autoregulatory mechanism by which the cell measures the level of thermal stress and regulates the synthesis of heat shock proteins. It has been proposed that the DNA-binding and oligomeric state of the heat shock transcription factor (HSF) is a principal step in the induction pathway that is responsive to the level of 70-kDa stress protein. To test this hypothesis, we investigated the association between HSF and 70-kDa stress protein by means of a coimmunoprecipitation assay. We found that 70-kDa stress proteins associate to similar extents with both latent and active forms of HSF, although unlike other 70-kDa stress protein substrates, the association with HSF was not significantly disrupted in the presence of ATP. Gel mobility shift assays indicated that active HSF trimers purified from a bacterial expression system could not be substantially deactivated in vitro with purified 70-kDa stress protein and ATP. In addition, elevated concentrations of hsp70 alone could not significantly inhibit induction of the DNA-binding activity of endogenous HSF in cultured rat cells, and the induction was also not inhibited in cultured rat cells or Drosophila cells containing elevated levels of all members of the heat shock protein family. However, the deactivation of HSF to the non-DNA-binding state after prolonged heat stress or during recovery could be accelerated by increased levels of heat shock proteins. Hence, the level of heat shock proteins may affect the rate of disassembly of HSF trimers, but another mechanism, as yet undefined, appears to control the onset of the oligomeric transitions.


The role of the co-transported cation in the coupling mechanism of the melibiose permease of Escherichia coli has been investigated by analysing its sugar-binding activity, facilitated diffusion reactions and energy-dependent transport reactions catalysed by the carrier functioning either as an H + , Na + or Li + -sugar symporter. The results suggest that the coupling cation not only acts as an activator for sugar-binding on the carrier but also regulates the rate of dissociation of the co-substrates in the cytoplasm by controlling the stability of the ternary complex cation-sugar—carrier facing the cell interior. Furthermore, there is some evidence that the membrane potential enhances the rate of symport activity by increasing the rate of dissociation of the co-substrates from the carrier in the cellular compartment. Identification of the melibiose permease as a membrane protein of 39 kDa by using a T7 RNA polymerase/promoter expression system is described. Site-directed mutagenesis has been used to replace individual carrier histidine residues by arginine to probe the functional contribution of each of the seven histidine residues to the symport mechanism. Only substitution of arginine for His94 greatly interferes with the carrier function. It is finally shown that mutations affecting the glutamate residue in position 361 inactivate translocation of the co-substrates but not their recognition by the permease.


2010 ◽  
Vol 185 (2) ◽  
pp. 213-220 ◽  
Author(s):  
Hiroshi Hamana ◽  
Li Shou-xin ◽  
Laure Breuils ◽  
Junzo Hirono ◽  
Takaaki Sato

2020 ◽  
Vol 21 (2) ◽  
pp. 416
Author(s):  
Angel De La Cruz Pech-Canul ◽  
Javier Carrillo-Campos ◽  
María de Lourdes Ballinas-Casarrubias ◽  
Rosa Lidia Solis-Oviedo ◽  
Selena Karina Hernández-Rascón ◽  
...  

Manganese peroxidases (MnP) from the white-rot fungi Phanerochaete chrysosporium catalyse the oxidation of Mn2+ to Mn3+, a strong oxidizer able to oxidize a wide variety of organic compounds. Different approaches have been used to unravel the enzymatic properties and potential applications of MnP. However, these efforts have been hampered by the limited production of native MnP by fungi. Heterologous expression of MnP has been achieved in both eukaryotic and prokaryotic expression systems, although with limited production and many disadvantages in the process. Here we described a novel molecular approach for the expression and purification of manganese peroxidase isoform 1 (MnP1) from P. chrysosporium using an E. coli-expression system. The proposed strategy involved the codon optimization and chemical synthesis of the MnP1 gene for optimised expression in the E. coli T7 shuffle host. Recombinant MnP1 (rMnP1) was expressed as a fusion protein, which was recovered from solubilised inclusion bodies. rMnP1 was purified from the fusion protein using intein-based protein purification techniques and a one-step affinity chromatography. The designated strategy allowed production of an active enzyme able to oxidize guaiacol or Mn2+.


Sign in / Sign up

Export Citation Format

Share Document