scholarly journals Environmentally Sustainable Flame Retardant Surface Treatments for Textiles: The Potential of a Novel Atmospheric Plasma/UV Laser Technology

Author(s):  
A. Richard Horrocks ◽  
Sara Eivazi ◽  
Maram Ayesh ◽  
Baljinder Kandola

Conventional flame retardant (FR) application processes for textiles involve aqueous processing which is resource intensive in terms of energy and water usage. Recent research using sol-gel and layer-by-layer chemistries, while claimed to be based on more environmentally-sustainable chemistry, still require aqueous media with the continuing problem of water management and drying processes being required. This paper outlines the initial forensic work to characterise commercially produced viscose/flax, cellulosic furnishing fabrics which have had conferred upon them durable flame retardant (FR) treatments using a novel, patented atmospheric plasma/UV excimer laser facility for processing textiles with the formal name - Multiplexed Laser Surface Enhancement (MLSE) system. This system (MTIX Ltd., UK), is claimed to offer the means of directly bonding of flame retardant precursor species to the component fibres introduced either before plasma/UV exposure or into the plasma/UV reaction zone itself, thereby eliminating a number of wet processing cycles. Nine commercial fabrics, pre-impregnated with a semi-durable, proprietary FR finish and subjected to the MLSE process have been analysed for their flame retardant properties before and after a 40 °C 30 min water soak. For one fabric, the pre-impregnated fabric was subjected to a normal heat cure treatment which conferred the same level of durability as the plasma/UV-treated analogue. TGA and LOI were used to further characterise their burning behaviour and the effect of the treatment on surface fibre morphologies were assessed. Scanning electron microscopy indicated that negligible changes had occurred to surface topography of the viscose fibres occurred during plasma/UV excimer processing.

Materials ◽  
2018 ◽  
Vol 11 (4) ◽  
pp. 483 ◽  
Author(s):  
Yuanlin Ren ◽  
Tongguo Huo ◽  
Yiwen Qin ◽  
Xiaohui Liu

Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 333 ◽  
Author(s):  
Giulio Malucelli

Surface-engineered coatings for the fire protection of cotton are being increasing used thanks to the ease of application of the coatings and their effectiveness in preventing flame propagation and improving resistance to irradiative heat flux exposure. Two main approaches have been extensively investigated, namely sol-gel derived coatings and layer-by-layer assemblies. These approaches are both capable of providing treated fabrics with outstanding flame-retardant features. Notwithstanding, according to the composition of the sol-gel recipes and the type of deposited layers, it is possible to design multifunctional (for example hydrophobic and electrically conductive) treatments. This review aims at discussing recent advances with respect to both strategies, highlighting current limitations, open challenges, and possible advances.


2021 ◽  
Vol 72 (02) ◽  
pp. 225-230
Author(s):  
RIADH ZOUAR ◽  
SONDES GARGOUBI ◽  
Emilia Visileanu

We investigated the potential of atmospheric plasma technology to enhance the properties of textile material against flame propagation before and after washing. The effects of this treatment on the rigidification of the media were also determined using draping and bending stiffness tests. We showed that deposing Silicone molecules on cotton fabrics leads to flame retardant cotton with a conservation of the whole structure after burning. Moreover, washing of the sample evidenced high permanency of the thin grafted coating against chemical domestic washing detergent. Nevertheless, comfort properties of the textile decrease, which limits the applications of the plasma eco-friendly technology in the clothing industry.


RSC Advances ◽  
2015 ◽  
Vol 5 (14) ◽  
pp. 10647-10655 ◽  
Author(s):  
Xin Wang ◽  
Manuel Quintero Romero ◽  
Xiu-Qin Zhang ◽  
Rui Wang ◽  
De-Yi Wang

A new intumescent coating is layer-by-layer deposited on cotton, leading to fire being extinguished after ignition on the fabric during vertical fire testing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Azam Marjani ◽  
Reza Khan Mohammadi

AbstractHg(II) has been identified to be one of the extremely toxic heavy metals because of its hazardous effects and this fact that it is even more hazardous to animals than other pollutants such as Ag, Au, Cd, Ni, Pb, Co, Cu, and Zn. Accordingly, for the first time, tetrasulfide-functionalized fibrous silica KCC-1 (TS-KCC-1) spheres were synthesized by a facile, conventional ultrasonic-assisted, sol–gel-hydrothermal preparation approach to adsorb Hg(II) from aqueous solution. Tetrasulfide groups (–S–S–S–S–) were chosen as binding sites due to the strong and effective interaction of mercury ions (Hg(II)) with sulfur atoms. Hg(II) uptake onto TS-KCC-1 in a batch system has been carried out. Isotherm and kinetic results showed a very agreed agreement with Langmuir and pseudo-first-order models, respectively, with a Langmuir maximum uptake capacity of 132.55 mg g–1 (volume of the solution = 20.0 mL; adsorbent dose = 5.0 mg; pH = 5.0; temperature: 198 K; contact time = 40 min; shaking speed = 180 rpm). TS-KCC-1was shown to be a promising functional nanoporous material for the uptake of Hg(II) cations from aqueous media. To the best of our knowledge, there has been no report on the uptake of toxic Hg(II) cations by tetrasulfide-functionalized KCC-1 prepared by a conventional ultrasonic-assisted sol–gel-hydrothermal synthesis method.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1286
Author(s):  
Kyung-Who Choi ◽  
Jun-Woo Kim ◽  
Tae-Soon Kwon ◽  
Seok-Won Kang ◽  
Jung-Il Song ◽  
...  

The use of halogen-based materials has been regulated since toxic substances are released during combustion. In this study, polyurethane foam was coated with cationic starch (CS) and montmorillonite (MMT) nano-clay using a spray-assisted layer-by-layer (LbL) assembly to develop an eco-friendly, high-performance flame-retardant coating agent. The thickness of the CS/MMT coating layer was confirmed to have increased uniformly as the layers were stacked. Likewise, a cone calorimetry test confirmed that the heat release rate and total heat release of the coated foam decreased by about 1/2, and a flame test showed improved fire retardancy based on the analysis of combustion speed, flame size, and residues of the LbL-coated foam. More importantly, an additional cone calorimeter test was performed after conducting more than 1000 compressions to assess the durability of the flame-retardant coating layer when applied in real life, confirming the durability of the LbL coating by the lasting flame retardancy.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3588
Author(s):  
Jiayi Chen ◽  
Yansong Liu ◽  
Jiayue Zhang ◽  
Yuanlin Ren ◽  
Xiaohui Liu

Lyocell fabrics are widely applied in textiles, however, its high flammability increases the risk of fire. Therefore, to resolve the issue, a novel biomass-based flame retardant with phosphorus and nitrogen elements was designed and synthesized by the reaction of arginine with phosphoric acid and urea. It was then grafted onto the lyocell fabric by a dip-dry-cure technique to prepare durable flame-retardant lyocell fabric (FR-lyocell). X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR) analysis demonstrated that the flame retardant was successfully introduced into the lyocell sample. Thermogravimetric (TG) and Raman analyses confirmed that the modified lyocell fabric featured excellent thermal stability and significantly increased char residue. Vertical combustion results indicated that FR-lyocell before and after washing formed a complete and dense char layer. Thermogravimetric Fourier-transform infrared (TG-FTIR) analysis suggested that incombustible substances (such as H2O and CO2) were produced and played a significant fire retarding role in the gas phase. The cone calorimeter test corroborated that the peak of heat release rate (PHRR) and total heat release (THR) declined by 89.4% and 56.4%, respectively. These results indicated that the flame retardancy of the lyocell fabric was observably ameliorated.


Sign in / Sign up

Export Citation Format

Share Document