Abstract A10: Fatty acid synthesis inhibitor, orlistat, potentiates cisplatin-induced toxicity in ovarian cancer cells

Author(s):  
Bennett Van Houten ◽  
Molly Heft-Neal ◽  
Wei Qian ◽  
Vera Roginskaya
2020 ◽  
Author(s):  
Alejandro Schcolnik‑Cabrera ◽  
Guadalupe Dominguez‑G�mez ◽  
Alma Ch�vez‑Blanco ◽  
Marisol Ram�rez‑Yautentzi ◽  
Roc�o Morales‑B�rcenas ◽  
...  

2007 ◽  
Vol 67 (7) ◽  
pp. 2964-2971 ◽  
Author(s):  
Weibo Zhou ◽  
Wan Fang Han ◽  
Leslie E. Landree ◽  
Jagan N. Thupari ◽  
Michael L. Pinn ◽  
...  

2021 ◽  
Author(s):  
Yuanyuan An ◽  
Hua Duan

Abstract Introduction: Dysregulation of fatty acid metabolism often occurs in tumor, which mainly constitutes of fatty acid synthesis and oxidation. In recent years, studies found that fatty acid metabolism participated in regulation of tumor immune microenvironment, which further influenced the progress of cancer. Thus, it is important to explore the key fatty acid metabolism-related molecules, which not only affects the prognosis of ovarian cancer, but also shows a close correlation with immune microenvironment of cancer.Methods: Database from TCGA was used to explore the fatty acid metabolism-related molecules, which correlated with the prognosis of ovarian cancer using univariate and multivariate cox proportional regression model. Nomogram was constructed to predict the prognostic probability based on ACSM3 and clinicopathological parameters. GDSC database was used to investigate the chemosensitivity of ovarian cancer cells. The correlation between ACSM3 and immune status of ovarian cancer was analyzed by TIMER and TISIDB online tools. In addition, CCK8 assay was used to investigate the chemosensitivity of ovarian cancer cells, real time-PCR and western blot were used to investigate the expression of chemoresistance-related genes.Results: ACSM3 worked as an independent favorable prognostic molecule through univariate and multivariate cox regression analysis. For the use in clinical, nomogram was constructed, and higher expression of ACSM3 showed better prognosis. We found that ACSM3 could regulate PI3K/AKT signaling, and GDSC database showed that PI3K/AKT inhibitor could promote the chemosensitivity of ovarian cancer cells. In addition, the expression of ACSM3 showed significantly correlated with the immune status of ovarian cancer. In vitro experiments showed that ACSM3 can promote the chemosensitivity of ovarian cancer cells by inhibiting PI3K/AKT signaling pathway.Conclusion: Our results showed that ACSM3 acted as a favorable prognostic-related biomarker for ovarian cancer, which could promote chemosensitivity of ovarian cancer through inhibiting PI3K/AKT signaling pathway. This might be due to participate in regulating immune status of ovarian cancer microenvironment.


Author(s):  
Andrea Antonosante ◽  
Michele d'Angelo ◽  
Vanessa Castelli ◽  
Mariano Catanesi ◽  
Dalila Iannotta ◽  
...  

Energy homeostasis is crucial for cell fate since all cellular activities are strongly dependent on the balance between catabolic and anabolic pathways. In particular, metabolic and energetic modulation has been reported in cancer cells long time ago, but have been neglected for a long time. Instead, during the past 20 years a recovery of the study of cancer metabolism has led to better consider metabolic alterations in tumors. Cancer cells must adapt their metabolism to meet the energetic and biosynthetic demands that accompany rapid growth of the primary tumor and colonization of distinct metastatic sites. They are largely dependent on aerobic glycolysis for their energy production and also are associated with increased fatty acid synthesis and increased rates of glutamine utilization. Emerging evidence has shown that therapeutic resistance to cancer treatment may arise due to deregulation in glucose metabolism, fatty acid synthesis, and glutamine utilization. Cancer cells exhibit a series of metabolic alterations induced by mutations leading to gain-of-function of oncogenes and loss-of-function of tumor suppressor genes that include increased glucose consumption, reduced mitochondrial respiration, increased reactive oxygen species generation and cell death resistance, all of which responsible for cancer progression. Cholesterol metabolism is also altered in cancer cells and supports uncontrolled cell growth. In this context, we review the roles of PPARs transcription factors, master regulators of cellular energetic metabolism, in the control and deregulation of energetic homeostasis observed in cancer. We highlight the different contribution of the different PPAR isotypes in different cancers and the differential control of their transcription in the different cancer cells.


2017 ◽  
Vol 8 (8) ◽  
pp. 2847-2856 ◽  
Author(s):  
Yiran Ding ◽  
Zhennan Gu ◽  
Yihe Wang ◽  
Shunhe Wang ◽  
Haiqin Chen ◽  
...  

Numerous medicinal plants have been reported to prevent various chronic diseases.


2003 ◽  
Vol 44 (10) ◽  
pp. 1963-1975 ◽  
Author(s):  
Céline Luquain ◽  
Anurag Singh ◽  
Lixin Wang ◽  
Vishwanathan Natarajan ◽  
Andrew J. Morris

PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e34443 ◽  
Author(s):  
Richard G. Moore ◽  
Thilo S. Lange ◽  
Katina Robinson ◽  
Kyu K. Kim ◽  
Alper Uzun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document