scholarly journals Bioinspired Temperature Responsive Multilayer Films and Their Performance under Thermal Fatigue

Author(s):  
Nikolaos Athanasopoulos ◽  
Nicolaos J. Siakavellas

In Nature, it is common for living plants and non-living plant tissues to consist of materials with anisotropic multilayer and non-homogenous structure. The structure of tissues determines their self-shaping and self-folding capabilities in response to a stimulus in order to activate different functionalities. Predetermined movements are realized according to changes in environmental conditions, which trigger the fibrous anisotropic structure of the plants’ material. In this study, we present the fabrication process of low-cost anisotropic multilayer materials that are capable of realizing complex movements caused by small temperature changes (<40 oC). The mismatch in the thermo-mechanical properties between three or more anisotropic thin layers creates responsive materials that alter their shape owing to the developed internal stresses. Isotropic layers can perform only bending movements, whereas anisotropic multilayer materials can perform bending, twisting or complex combined modes. The movements of the material can be controlled by forming anisotropic homogenous metallic strips over an anisotropic polymer. As a result, inexpensive responsive materials can be developed to passively react to a very broad range of thermal requirements. We studied the major parameters that affect the sensitivity of the developed materials, as well as their failure modes and crack formation under thermal fatigue conditions.

Biomimetics ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 20
Author(s):  
Nikolaos Athanasopoulos ◽  
Nicolaos Siakavellas

The structure of certain nonliving tissues determines their self-shaping and self-folding capabilities in response to a stimulus. Predetermined movements are realized according to changes in the environmental conditions due to the generated stresses of the multilayer anisotropic structure. In this study, we present bioinspired responsive anisotropic multilayer films and their fabrication process which comprises low-cost techniques. The anisotropic multilayer materials are capable of deforming their geometry caused by small temperature changes (<40 °C). The mismatch in the thermo-mechanical properties between three or more anisotropic thin layers creates responsive materials that alter their shape owing to the developed internal stresses. The movements of the material can be controlled by forming anisotropic homogenous metallic strips over an anisotropic thermoplastic layer. As a result, responsive multilayer films made of common materials can be developed to passively react to a temperature stimulus. We demonstrate the ability of the anisotropic materials to transform their geometry and we present a promising fabrication process and the thermal fatigue resistance of the developed materials. The thermal fatigue performance is strongly related to the fabrication method and the thickness of the strips. We studied the thermal fatigue performance of the materials and how the thermal cycling affects their sensitivity, as well as their failure modes and crack formation.


2002 ◽  
Vol 729 ◽  
Author(s):  
Siyi Lai ◽  
L. James Lee ◽  
Liyong Yu ◽  
Kurt W. Koelling ◽  
Marc J. Madou

AbstractIn this paper, we review the approaches developed in our laboratory for polymer-based micro/nanofabrication. For fabrication of microscale features, UV-LIGA (UV-lithography, electroplating, and molding) technology was applied for low-cost mass production. For fabrication of sub-micron or nanoscale features, a novel nano-manufacturing protocol is being developed. The protocol applies a novel nano-lithography imprinting process on an ultra-precision motion-control station. It is capable of economically producing well-defined pores or channels at the nanometer scale on thin polymer layers. The formed thin layers can be used as nano-filters for chemical or bio-separation. They can also be integrated into miniaturized devices for cell immunoprotection or tissue growth. For bonding of polymer-based microfluidic platforms, a novel resin-gas injection-assisted technique has been developed that achieves both bonding and surface modification. This new approach can easily seal microfluidic devices with micron and sub-micron sized channels without blocking the flow path. It can also be used to modify the channel shape, size, and surface characteristics (e.g., hydrophilicity, degree of protein adsorption). By applying the masking technique, local modification of the channel surface can be achieved through cascade resin-gas injection.


2013 ◽  
Vol 351-352 ◽  
pp. 1532-1536 ◽  
Author(s):  
Bin Ding ◽  
Li Jun Ouyang ◽  
Zhou Dao Lu ◽  
Wei Zhen Chen

BFRP has excellent strength, durability, thermal properties and economic cost. To test seismic performance of short columns strengthened with BFRP. Low cyclic loading test was conducted on one comparative short column and two RC short columns strengthened with BFRP. The test shows that short columns warped by BFRP show excellent failure modes, shear capacity, ductility and energy dissipation. As a new fiber reinforced plastic, BFRP has a good prospect in the area of seismic strengthening for its low cost and comprehensive mechanical properties.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yonggang Xiao ◽  
Jubing Zhang ◽  
Jie Cao ◽  
Changhong Li

The prefabricated urban utility tunnels (UUTs) have many advantages such as short construction period, low cost, high quality, and small land occupation. However, there is still a lack of in-depth analysis of the mechanical performance of the prefabricated urban utility tunnel (UUT) structure with bolted connections under different working conditions. In this paper, the force performance of a prefabricated UUT in Tongzhou District, Beijing, was studied under different working conditions using two methods: field monitoring and numerical simulation. The multichannel strain monitor was used for monitoring, and the internal wall concrete and bolt strain change data under the two conditions of installation and backfill were obtained. Combined with the construction process of the UUTs, a three-dimensional numerical model was established by COMSOL, where the build-in bolt assembly was used to simulate the longitudinal connection of the tunnel. The simulation results were compared with the measured data to verify the rationality of the computational model. The simulation results showed that the concrete and bolts on the inner wall of the tunnel work well under the two conditions of installation and backfilling; The deformation of the top plate of the prefabricated tunnel was approximately parabolic, with the largest vertical displacement (0.37 mm) in the middle and the most sensitive to the vertical load in the central part of the roof. The central portion of the side wall had the largest displacement (0.17 mm) in the inner concave. The tensile stress of bolt 3 increased the most (30.75 MPa) but was still much smaller than the yield strength of the bolt. The concrete and bolts of the UUT were found to work well through force analysis under operating conditions. In conclusion, analysis of structural forces and deformation failure modes will help design engineers understand the basic mechanisms and select the appropriate UUT structure.


Author(s):  
A.P. Newbery ◽  
P.S. Grant ◽  
R.M. Jordan ◽  
A.D. Roche ◽  
T.C. Carr

Abstract The manufacture of tooling using the electric arc spray process to spray steel directly onto a master pattern offers substantial reductions in the lead times required to make complex tooling for polymer injection moulding and other applications. The process of spray forming is fast, efficient, and low cost, and has been shown to be dimensionally accurate with proper control over the residual stresses that develop during spraying. Poor dimensional control because of high internal stresses in thick arc sprayed steel coatings is well known, but these problems can be avoided by the use of correct spraying conditions. This paper describes the STD SPRAYFORM process for the manufacture of tooling for the polymer injection moulding of a component for a leading company in the U.S. The steps in the spray forming process, both before and after spraying, are described. The spray forming route competed directly with a traditional method for toolmaking and considerably reduced the lead time from order to completion. The tooling produced by spray forming has been operating commercially in production in the U.S. and has to date produced in the region of half a million parts without appreciable wear. The incorporation of contoured cooling channels during spraying has enabled plastic injection moulding cycle times to be decreased by 15%.


Micromachines ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 598 ◽  
Author(s):  
Wei-Chih Wen ◽  
Ting-I Chou ◽  
Kea-Tiong Tang

Metal-oxide (MOX) gas sensors are widely used for gas concentration estimation and gas identification due to their low cost, high sensitivity, and stability. However, MOX sensors have low selectivity to different gases, which leads to the problem of classification for mixtures and pure gases. In this study, a square wave was applied as the heater waveform to generate a dynamic response on the sensor. The information of the dynamic response, which includes different characteristics for different gases due to temperature changes, enhanced the selectivity of the MOX sensor. Moreover, a polynomial interaction term mixture model with a dynamic response is proposed to predict the concentration of the binary mixtures and pure gases. The proposed method improved the classification accuracy to 100%. Moreover, the relative error of quantification decreased to 1.4% for pure gases and 13.0% for mixtures.


2017 ◽  
Vol 139 (2) ◽  
Author(s):  
Vijay Subramanian ◽  
Kyle Yazzie ◽  
Tsgereda Alazar ◽  
Bharat Penmecha ◽  
Pilin Liu ◽  
...  

As semiconductor packaging technologies continue to scale, it drives the use of existing and new materials in thin layer form factors. Increasing packaging complexity implies that materials in thin layers are subject to nontrivial loading conditions, which may exceed the toughness of the material, leading to cracks. It is important to ensure that the reliability of these low-cost materials is at par or better than currently used materials. This in turn leads to significant efforts in the area of material characterization at the lab level to speed up the development process. Methods for testing and characterizing fracture-induced failures in various material systems in electronic packaging are investigated in this paper. The learnings from different test methods are compared and discussed here. More specifically, different fracture characterization techniques on (a) freestanding “thin” solder-resist films and (b) filled “bulk” epoxy materials such as underfills and epoxy mold compounds are investigated. For thin films, learnings from different test methods for measuring fracture toughness, namely, uniaxial tension (with and without an edge precrack) and membrane penetration tests, are discussed. Reasonably good agreement is found between the various thin film toughness test methods; however, ease of sample preparation, fixture, and adaptability to environmental testing will be discussed. In the case of filled epoxy resin systems, the single-edge-notched bending (SENB) technique is utilized to obtain the fracture toughness of underfills and mold compounds with filler materials. Learnings on different methods of creating precracks in SENB samples are also investigated and presented.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2486 ◽  
Author(s):  
Fang Han ◽  
Jinwei Jiang ◽  
Kai Xu ◽  
Ning Wang

Timber structures have been widely used due to their low-cost and environmental-friendly properties. It is essential to monitor connection damage to ensure the stability and safety of entire timber structures since timber connection damage may induce catastrophic incidents if not detected in a timely manner. However, the current investigations on timber connections focus on mechanical properties and failure modes, and the damage detection of timber connection receives rare attention. Therefore, in this paper, we investigate the damage detection of four common timber connections (i.e., the screw connection, the bolt connection, the decussation connection, and the tooth plate connection) by using the active sensing method. The active sensing method was implemented by using a pair of lead zirconate titanate (PZT) transducers: one PZT patch is used as an actuator to generate stress waves, and the other works as a sensor to detect stress waves after propagating across the timber connection. Based on the wavelet packet energy analysis, the signal energy levels of received stress waves under different damage extent are quantified. Finally, by comparing the signal energy between the intact status and the damage status of the timber connection, we find that the energy attenuates with increasing severity of the connection damage. The experimental results demonstrate that the active sensing method can realize real-time monitoring of timber connection damage, which can guide further investigations.


Technologies ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 62
Author(s):  
Mateusz Wrazidlo ◽  
Anna Bzymek

An environmental chamber is a specialistic device used for testing effects of given controlled conditions on a variety of objects. In case of plant growth chambers, the conditions are controlled usually for plant cultivation and propagation or botanical examination undertaken on living plant material. The aim of the project was to design and build a prototype of a desktop device with a control system capable of being used as a chamber supporting plant cultivation and propagation processes by the means of partial automation of environment control. The conditions controlled in the chamber are based on the environmental requirements of plant genera, such as Heliamphora, Drosera, Orectanthe, Cyrilla, Stegolepis, Maguireothamnus, or Utricularia. These plants occur naturally in the Guiana Highlands region of Venezuela, Brazil, and Guyana, especially around the upper parts of table-shaped mountain massifs called tepuis. The chamber was designed to simulate some of the peculiar natural factors and phenomena occurring in the high-tepui and surrounding mid-elevation wetland habitats, being the most significant for amateur-level plant cultivation, keeping the design as simple and low cost as possible. It was proven on the basis of the results of several tests made during the evaluation phase that the designed prototype of the chamber operates in a satisfying way, providing basic functionality matching the base assumptions.


Sign in / Sign up

Export Citation Format

Share Document