scholarly journals Experimental and theoretical study on the synergistic inhibition effect of yridine derivatives and sulfur-containing compounds on the corrosion of carbon steel in CO2-saturated 3.5 wt.% NaCl solution

Author(s):  
Junlei Tang ◽  
Yuxin Hu ◽  
Zhongzhi Han ◽  
Hu Wang ◽  
Yuanqiang Zhu ◽  
...  

The corrosion inhibition performance of pyridine derivatives (4-methylpyridine and its quaternary ammonium salts) and sulfur-containing compounds (thiourea and mercaptoethanol) with different molar ratios on carbon steel in CO2-saturated 3.5 wt.% NaCl solution was investigated by weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy and scanning electron microscopy. The synergistic corrosion inhibition mechanism of mixed inhibitors was elucidated by the theoretical calculation and simulation. The molecule of pyridine derivatives compound with larger volume has the priority to adsorb on the metal surface, while the molecules of sulfur-containing compounds with smaller volume fill in vacancies. A dense adsorption film would be formed when 4-PQ and sulfur-containing compounds are added at a proper mole ratio.

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3270 ◽  
Author(s):  
Junlei Tang ◽  
Yuxin Hu ◽  
Zhongzhi Han ◽  
Hu Wang ◽  
Yuanqiang Zhu ◽  
...  

The corrosion inhibition performance of pyridine derivatives (4-methylpyridine and its quaternary ammonium salts) and sulfur-containing compounds (thiourea and mercaptoethanol) with different molar ratios on carbon steel in CO2-saturated 3.5 wt.% NaCl solution was investigated by weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy, and scanning electron microscopy. The synergistic corrosion inhibition mechanism of mixed inhibitors was elucidated by the theoretical calculation and simulation. The molecules of pyridine derivative compounds with a larger volume has priority to adsorb on the metal surface, while the molecules of sulfur-containing compounds with a smaller volume fill in vacancies. A dense adsorption film would be formed when 4-PQ and sulfur-containing compounds are added at a proper mole ratio.


2020 ◽  
Vol 10 (20) ◽  
pp. 7069
Author(s):  
Megawati Zunita ◽  
Deana Wahyuningrum ◽  
Buchari ◽  
Bunbun Bundjali ◽  
I Gede Wenten ◽  
...  

In this study, imidazole derivative-based new ionic liquids were investigated as corrosion inhibitors. These new ionic liquids (ILs) are 1,3-dipropyl-2-(2-propoxyphenyl)-4,5-diphenylimidazole iodide (IL1) and 1,3-dibutyl-2-(2-butoxyphenyl)-4,5-diphenylimidazole iodide (IL2). The corrosion inhibition effects of two new ILs were observed on carbon steel in brackish water media (1% NaCl solution). Carbon steel coupons were exposed to 1% NaCl solution with various concentrations of ILs. Corrosion inhibition effects were tested by the electrochemical impedance spectroscopy (EIS) method and the Tafel method at various temperatures ranging from 25 °C to 55 °C. The results showed that ILs have potential as corrosion inhibitors and the adsorption mechanisms of IL1 and IL2 on carbon steel surfaces were also determined, which followed the Langmuir adsorption isotherm model. Acquisition of ∆Gads values of IL1 and IL2 were −35.04 and −34.04 kJ/mol, respectively. The thermodynamic data of the ILs show that semi-chemical and or physical adsorptions occurred on carbon steel surfaces.


2018 ◽  
Vol 65 (6) ◽  
pp. 658-667 ◽  
Author(s):  
Yingjun Zhang ◽  
Baojie Dou ◽  
Yawei Shao ◽  
Xue-Jun Cui ◽  
Yanqiu Wang ◽  
...  

Purpose This paper aim to investigate the influence of PA on the corrosion behavior of carbon steel with blast cleaned or pre-rusted treatments, and interpret the inhibition mechanism of PA on the steel with different surface treatments. Design/methodology/approach The influence of PA on the corrosion behavior of blast cleaned or rusty steel was investigated by means of electrochemical impedance spectroscopy (EIS). The EIS data were analyzed using the @ZsimpWin commercial software. The morphology and component of steel after immersion were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), Fourier transformation infrared (FTIR) and X-ray diffractometer (XRD). Findings EIS analysis results indicated that PA had good corrosion inhibition for blast cleaned or rusty steel. SEM, EDS, FTIR and XRD further indicated that PA had two main corrosion inhibition processes for the corrosion inhibition of blast cleaned or rusty steel: corrosion dissolution and formation of protective barrier layers. Originality/value Most published works focus the attention only toward the effect of corrosion inhibitor for the clean metal surfaces. However, the surface condition of metal sometimes is unsatisfactory in the practical application of corrosion inhibitor, such as existing residual rust. Some studies also have shown that several corrosion inhibitors could be applied on partially rusted substrates. These inhibitors mainly include tannins and phosphoric acid, but not PA. Therefore, the authors investigated the influence of PA on the corrosion behavior of carbon steel with blast cleaned or pre-rusted treatments in this paper.


2019 ◽  
Vol 233 (12) ◽  
pp. 1713-1739
Author(s):  
Emad E. El-Katori ◽  
A.S. Fouda ◽  
Rahma R. Mohamed

AbstractHerein, the corrosion inhibition performance of mild steel (MS) in an acidic environment (1.0 M HCl) by the valerian extract has been studied via weight loss method (WL), potentiodynamic polarization (PP), electrochemical impedance spectroscopy (EIS) and electrochemical frequency modulation (EFM) techniques. The results illustrated that the inhibition efficiency, raised by the rise of the extract concentrations. The inhibitory mechanism depended on the creation of a stable plant extract-complex on the mild steel surface. Polarization studies confirmed that the extract behaved as a mixed type inhibitor. The corrosion inhibition was supposed to exist via adsorption of the main components of the valerian extract. Attenuated total reflection-infrared spectroscopy (ATR-IR), scanning electron microscopy (SEM) and atomic force microscopy (AFM) were applied to investigate the change in the surface morphology and confirmed the corrosion inhibition mechanism. The complete study confirmed that the efficiency of the valerian extract as a safe, eco-friendly and exchange corrosion inhibition for mild steel in an acidic environment.


Chemistry ◽  
2020 ◽  
Vol 2 (4) ◽  
pp. 900-917
Author(s):  
George M. Tsoeunyane ◽  
Elizabeth M. Makhatha

The synthesis and corrosion inhibition performance of poly(butylene-succinate)-L-proline (PBSLP) prepared by solution polymerization are reported. PBSLP was characterized by FTIR, XRD, and SEM/energy dispersive X-ray (EDX). PBSLP was used to protect mild steel in 1 M hydrochloric acid. An SEM and an atomic force microscope (AFM) were used to characterize the surface morphology of the mild steel coupons. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to characterize the inhibition mechanism of PBSLP, and the inhibitor was a mixed-type corrosion inhibitor with a maximum corrosion inhibition efficiency of 93.0%. Adsorption studies revealed the adsorption of PBSLP to be a monolayer process and therefore, obeyed the Langmuir isotherm model.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Atria Pradityana ◽  
Sulistijono ◽  
Abdullah Shahab ◽  
Lukman Noerochim ◽  
Diah Susanti

Inhibitor is a substance that is added to the corrosive media to inhibit corrosion rate. Organic inhibitors are preferred to inorganic ones since they are environmentally friendly. One of the organic compounds which is rarely reported as a corrosion inhibitor isMyrmecodia Pendans. The organic compounds can be adsorbed on the metal surface and block the active surface to reduce the rate of corrosion. In this study, the used pipe was carbon steel API 5L Grade B with 3.5% NaCl solution as the corrosion medium. The objective of this research was to analyze the inhibition mechanismMyrmecodia Pendanstowards carbon steel in a corrosion medium. Concentration variations of extractMyrmecodia Pendanswere 0–500 ppm. Fourier Transform Infrared (FTIR) was used for chemical characterization ofMyrmecodia Pendans. Polarization and Electrochemical Impedance Spectroscopy (EIS) were used to measure the corrosion rate and behaviour. From the electrochemical measurements, it was found that the addition of 400 mg/L inhibitor gave the highest inhibition efficiency.Myrmecodia Pendansacted as a corrosion inhibitor by forming a thin layer on the metal surface.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1642
Author(s):  
Mingxing Liu ◽  
Dayu Xia ◽  
Ambrish Singh ◽  
Yuanhua Lin

This paper studies the corrosion inhibition performance and mechanism of dextrin (Dxt) and its graft copolymer with caprolactam (Dxt-g-CPL) on J55 steel in 1 M HCl solution. Caprolactam is grafted and copolymerized with dextrin by a chemical synthesis method, to obtain a dextrin graft copolymer corrosion inhibitor. The composition of the synthesized graft copolymer was characterized by FTIR to identify whether the grafting was successful. Through weightlessness, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization curve (TAFEL), scanning electrochemical microscope (SECM), scanning electron microscope (SEM), and contact angle experiments, the graft copolymer to J55 steel in 1 M HCl solution and the corrosion inhibition performance were evaluated. Moreover, we discuss its corrosion inhibition mechanism. The dextrin graft copolymer has good corrosion inhibition performance for J55 in 1 M HCl solution. When the concentration of the corrosion inhibitor increases, the corrosion inhibition efficiency will also increase. At a certain concentration, when the temperature rises, the corrosion inhibition efficiency will gradually decrease. When the concentration is 300 mg/L, it has a better corrosion inhibition effect, and the corrosion inhibition efficiency is 82.38%. Potential polarization studies have shown that Dxt-g-CPL is a mixed corrosion inhibitor, which inhibits both the cathode and the anode of the electrode reaction. SEM, SECM, and contact angle analysis results show that Dxt-g-CPL can significantly inhibit corrosion. Compared with Dxt, Dxt-g-CPL has a better inhibitory effect.


2021 ◽  
Author(s):  
Baiyi Chen ◽  
Guohe Xu ◽  
Luyao Wang ◽  
Chen Zhang ◽  
Congcong Li ◽  
...  

Abstract The acidic corrosion of carbon steel is a great concern, which has caused serious economic losses on a global scale. Therefore, the exploitation of corrosion inhibition strategy for carbon steel and an in-depth study on its mechanism are of vital importance. Here we have developed a mixed type corrosion inhibitor of PPy-CTS, which incorporated the good solubility and adsorption capacity of chitosan (CTS) into the excellent corrosion inhibition performance of polypyrrole (PPy) by in-situ polymerization of pyrrole on CTS. The corrosion inhibition performance of PPy-CTS composites as a potential corrosion inhibitor for Q235 carbon steel in 1 M HCl solution was investigated by electrochemical (potentiodynamic polarization curve and AC impedance spectroscopy) and surface morphological (scanning electron microscopy and water droplet contact angle) characterization. The results revealed that PPy-CTS with the optimal concentration of 250 ppm achieved the highest corrosion inhibition efficiency of 91.1%. Subsequently, the corrosion inhibition mechanism was furtherly studied. Gibbs free energy obtained from the Langmuir isotherm model suggested that the absorption of PPy-CTS corrosion inhibitor on Q235 steel in 1 M HCl solution belonged to a combined type of physisorption and chemisorption, which resulted in the formation of a physical barrier preventing the carbon steel from corrosion. In addition, the conductive polymer PPy of corrosion inhibitor possessed an oxide-film anodic protection for carbon steel. Ultimately, PPy-CTS effectively suppressed the corrosion reaction of carbon steel in harsh acidic environment through the synergistic effect of physical barrier and anodic protection.


2012 ◽  
Vol 463-464 ◽  
pp. 895-899 ◽  
Author(s):  
Feng Wang ◽  
Xuan De Ji ◽  
Xin Lu Liu

In recent years more attention is paid to high-efficiency and nontoxic corrosion inhibitor. Synergistic inhibition is an effective means to improve the inhibitive force of inhibitor. The aim of this work is to attempt to find out inhibition mechanism and synergistic effect of Lysozyme (LYZ) and vitamin B1 (VB1) and to diversify the application of inhibitor in acidic medium. The corrosion inhibition effect of LYZ and VB1 for carbon steel specimens in 0.5 mol•L-1 sulphuric acid solution have been investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods. The obtained results show that carbon steel is more efficiently protected by the mixture of lysozyme and vitamin B1 (LYZ-VB1) than LYZ or VB1. By potentiodynamic polarization method, the highest inhibition efficiencies of 89.5% and 80.04% are observed with single LYZ or VB1, respectively, and an improved inhibition efficiency of 94.2% is obtained with LYZ-VB1 at 25°C.


Author(s):  
Hamze Foratirad ◽  
Majid Golabadi ◽  
Masoud Asgari ◽  
Mohammad Ghasem Gholami ◽  
Meysam Karimi

Abstract In this study, the synergistic effects of 2-mercaptobenzotiazole molecules and zinc nitrate on the corrosion behavior of carbon steel were investigated using electrochemical techniques in 3.5% NaCl solution. The experimental results revealed that combination of 2-mercaptobenzoimidazole (MBT) and zinc nitrate with ratio of 100 ppm : 100 ppm, resulted in the least corrosion current (1.03 lA cm-2) and the highest corrosion inhibition efficiency. Polarization results showed that the inhibition mechanism of inhibitor was mixed-type (anodic and cathodic mechanism) corrosion inhibition which was predominantly influenced by a reduction in dissolution rate of the substrate (decrease in anodic current density). Electrochemical impedance spectroscopy analysis yielded more accurate results about the formation mechanism and stability of the inhibitor film over prolonged time. The precipitation of chelate from inhibitor molecules and zinc cations on steel surface was found to be the main mechanism for increasing the corrosion resistance of steel substrate.


Sign in / Sign up

Export Citation Format

Share Document