Hypericum perforatum Extract Mediated Green Synthesis of Ultra-Small Fe2O3 Nanostructures

Author(s):  
Agnieszka Sidorowicz ◽  
Qaisar Maqbool ◽  
Piotr Kachlicki ◽  
Gregory Franklin

We report on the synthesis of highly homogenous, oval shaped and ultra-small organometallic Fe2O3-nanostructures (OM-Fe2O3-NS) using H. perforatum leaf extract. Analysis of extracts before and after the synthesis of OM-Fe2O3-NS by ultra-performance liquid chromatography-diode array detection coupled with mass spectrometry (UPLC-DAD-MS) has revealed the active participation of quinic acid, neo-chlorogenic acid, epicatechin, quercetin 3'-malonylglucoside, and hyperforin in the formation of metal organic framework (MOF). OM-Fe2O3-NS were thoroughly investigated for their physico-chemical properties using Transmission electron microscopy (TEM), Atomic force microscopy (AFM), Energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), NanoDrop Ultraviolet and visible spectroscopy (UV) and Thermo-gravimetric analysis (TGA). Our results show that H. perforatum secondary metabolites have got a great potential in engineering the next-generation ultra-smart materials.

2014 ◽  
Vol 979 ◽  
pp. 440-443
Author(s):  
W. Siriprom ◽  
K. Teanchai ◽  
S. Kongsriprapan ◽  
J. Kaewkhao ◽  
N. Sangwaranatee

The chemical and physical properties of topsoil and subsoil which collected from the cassava cropping area in Chonburi Province have been investigated. The characterization of both soil sample were used X-Ray Diffraction (XRD), Energy Dispersive X-Ray Fluorescence (EDXRF) while FTIR used to confirmed the formation of intermolecular bonding and Thermo-Gravimetric Analysis (TGA) used for investigated the crystalline. It was found that, the XRD pattern indicated quartz phase. The chemical composition by XRF reported that the soils samples consist of Si, Al, Ca, Fe, K, Mn, Ti, Cr, Zn, Ag and Cu. and TGA results, noticed that the removal of moisture and organics material.


2015 ◽  
Vol 1087 ◽  
pp. 30-34 ◽  
Author(s):  
KANAGESWARY SOCKALINGAM ◽  
Mohd Azha Yahya ◽  
Hasan Zuhudi Abdullah

Hydroxyapatite (HAp), classified as bioceramic materials is the major mineral constituent of vertebrate bones and teeth. In this study, the effect of temperature on isolation and characterization of HAp from tilapia fish scales have been investigated. Scales were subjected to heat treatment at different temperatures (800°C and 1000°C) and microstructure of both raw and calcined scales were observed under Scanning Electron Microscopy (SEM). Thermo Gravimetric Analysis (TGA) and Energy Dispersive X-Ray Spectroscopy (EDX) results have revealed the best calcination temperature of tilapia scales to be 800°C due to the calculated calcium to phosphorous weight ratio (Ca/P). The Ca/P ratio for scales treated at 800°C and 1000°C were 1.598 and 1.939 respectively. The phase purity and crystallinity of produced HAp was further confirmed by X-Ray Diffraction (XRD) analysis. Based on the study, it can be concluded that tilapia fish scale is a good natural source of HAp with 800°C as the optimum calcination temperature in HAp production.


2020 ◽  
Vol 6 (3) ◽  
pp. 431-445 ◽  
Author(s):  
Mohammad Adeel Khan ◽  
Bazid Khan ◽  
Khan Shahzada ◽  
Sajjad Wali Khan ◽  
Nauman Wahab ◽  
...  

In the marble industry, a lot of marble is wasted in the form of odd blocks of various sizes and slurry consisting of water and micro-fine particles. The slurry on drying converts into powder. Both slurry and powder have adverse effects on the environment. This research is focused on the gainful utilization of waste marble powder (WMP) by converting it into a valuable binding material. For this purpose, WMP and clay were collected, and their physical and chemical properties were determined. A mix of WMP and clay was prepared and burnt at a temperature around 1300 oC. The burnt mix was ground to powder form to get marble cement (MC). The MC was then used in mortar. The compressive and flexural strengths of mortar cubes and prisms were determined. Apart from this, X-ray diffraction (XRD) analysis, thermo-gravimetric analysis (TGA) and scanning electron microscopic (SEM) analysis were also carried out. The chemical composition showed that the MC has 52.5% di-calcium silicate (C2S) and 3.5% tri-calcium silicate (C3S).The  compressive strength of MC mortar after 28 days curing is 6.03 MPa, which is higher than M1 mortar of building code of Pakistan (5 MPa). The compressive strength of MC mortar after one year is 20.67 MPa, which is only 17% less than OPC mortar.


2021 ◽  
Author(s):  
Hareenanden Ramasawmy ◽  
Jaykumar Chummun ◽  
Piyushaa Devi Emrith

Abstract This study describes an investigation of the evolution of the mechanical and chemical properties of maize stem fibres with the growth stages of the plant, and how the tensile strength is influenced by the presence of nodes along the fibre length. Furthermore the variation of the tensile strength and chemical functional groups among four common maize varieties were determined. In this context, the fibres were characterised by performing tensile test, density & linear density tests, Fourier Transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), Thermo-gravimetric analysis (TGA) and surface morphology (SEM image analysis). The fibres were all extracted manually, and in some cases preceded by a water retting process for ten days. The thermal analysis, FTIR and x-ray results showed that in general the fibres from the different maize varieties and from the different growth stages are semi-crystalline in nature. The SEM micrographs revealed the presence of equi-spaced nodes along the fibre length, which are believed to be due to the growth stresses induced in the plant stem. The inter-node distance varied in relation to the growth stage of the plant, and yielded a good correlation (coefficient of 0.91) with the tensile strength of the fibres. Finally a better fibre yield was obtained from the stem at the senescence stage of the maize plant.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 770 ◽  
Author(s):  
Mohamed Boussemghoune ◽  
Mustapha Chikhi ◽  
Yasin Ozay ◽  
Pelin Guler ◽  
Bahar Ozbey Unal ◽  
...  

In this study, we investigated the effect of different organic binders on the morphologic structure of ceramic membrane support. Natural raw clay material (kaolin) was used as the main mineral for ceramic membrane support. The physical and chemical properties of kaolin powder and the supports were identified by X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET), thermo gravimetric analysis (TGA), scanning electron microscopy (SEM), particle size and zeta potential distribution. Based on the XRF test, the main composition of kaolin powder was SiO2 (47.41%) and Al2O3 (38.91%), while the rest were impurities. The FTIR spectra showed the functional groups of Si-O and Al-O. The XRD diffractogram of natural raw clay powder identified kaolinite and nacrite were the main mineral phase whereas muscovite and quartz were detected in small quantities in the sample. After prepared the ceramic membrane supports, XRD diffractogram showed that anorthite and gehlenite were detected as the main mineral phases for ethylene glycol (EG), gelatin, methocel and for polyethylene glycol (PEG), respectively. According to BET analyses, the maximum and the minimum pore width were obtained for PEG and gelatin organic binders.


BMC Chemistry ◽  
2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Arefeh Dehghani Tafti ◽  
Bi Bi Fatemeh Mirjalili ◽  
Abdolhamid Bamoniri ◽  
Naeimeh Salehi

AbstractNano-eggshell/Ti(IV) as a novel naturally based catalyst was prepared, characterized and applied for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives. The characterization of nano-eggshell/Ti(IV) was performed using Fourier Transform Infrared spectroscopy, X-ray Diffraction, Field Emission Scanning Electron Microscopy, Energy-Dispersive X-ray Spectroscopy, and Thermo Gravimetric Analysis. Dihydropyrano[2,3-c]pyrazoles were synthesized in the presence of nano-eggshell/Ti(IV) via a four component reaction of aldehydes, ethyl acetoacetate, malononitrile and hydrazine hydrate at room temperature under solvent free conditions. The principal affairs of this procedure are mild condition, short reaction times, easy work-up, high yields, reusability of the catalyst and the absence of toxic organic solvents.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1728
Author(s):  
Peng Wen ◽  
Teng-Gen Hu ◽  
Yan Wen ◽  
Ke-Er Li ◽  
Wei-Peng Qiu ◽  
...  

An ethyl acetate extract from of Nervilia fordii (NFE) with considerable suppression activity on lipid peroxidation (LPO) was first obtained with total phenolic and flavonoid contents and anti-LPO activity (IC50) of 86.67 ± 2.5 mg GAE/g sample, 334.56 ± 4.7 mg RE/g extract and 0.307 mg/mL, respectively. In order to improve its stability and expand its application in antioxidant packaging, the nano-encapsulation of NFE within poly(vinyl alcohol) (PVA) and polyvinyl(pyrrolidone) (PVP) bio-composite film was then successfully developed using electrospinning. SEM analysis revealed that the NFE-loaded fibers exhibited similar morphology to the neat PVA/PVP fibers with a bead-free and smooth morphology. The encapsulation efficiency of NFE was higher than 90% and the encapsulated NFE still retained its antioxidant capacity. Fourier transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD) analysis confirmed the successful encapsulation of NFE into fibers and their compatibility, and the thermal stability of which was also improved due to the intermolecular interaction demonstrated by thermo gravimetric analysis (TGA). The ability to preserve the fish oil’s oxidation and extend its shelf-life was also demonstrated, suggesting the obtained PVA/PVP/NFE fiber mat has the potential as a promising antioxidant food packaging material.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1712
Author(s):  
Appusamy Muthukrishnaraj ◽  
Salma Ahmed Al-Zahrani ◽  
Ahmed Al Otaibi ◽  
Semmedu Selvaraj Kalaivani ◽  
Ayyar Manikandan ◽  
...  

Towards the utilization of Cu2O nanomaterial for the degradation of industrial dye pollutants such as methylene blue and methyl orange, the graphene-incorporated Cu2O nanocomposites (GCC) were developed via a precipitation method. Using Hummers method, the grapheme oxide (GO) was initially synthesized. The varying weight percentages (1–4 wt %) of GO was incorporated along with the precipitation of Cu2O catalyst. Various characterization techniques such as Fourier-transform infra-red (FT-IR), X-ray diffraction (XRD), UV–visible diffused reflectance (UV-DRS), Raman spectroscopy, thermo gravimetric analysis (TGA), energy-dispersive X-ray analysis (EDX), and electro chemical impedance (EIS) were followed for characterization. The cabbage-like morphology of the developed Cu2O and its composites were ascertained from field-emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HR-TEM). In addition, the growth mechanism was also proposed. The results infer that 2 wt % GO-incorporated Cu2O composites shows the highest value of degradation efficiency (97.9% and 96.1%) for MB and MO at 160 and 220 min, respectively. Further, its catalytic performance over visible region (red shift) was also enhanced to an appreciable extent, when compared with that of other samples.


2017 ◽  
Vol 50 ◽  
pp. 18-31 ◽  
Author(s):  
Rudzani Sigwadi ◽  
Simon Dhlamini ◽  
Touhami Mokrani ◽  
Patrick Nonjola

The paper presents the synthesis and investigation of zirconium oxide (ZrO2) nanoparticles that were synthesised by precipitation method with the effects of the temperatures of reaction on the particles size, morphology, crystallite sizes and stability at high temperature. The reaction temperature effect on the particle size, morphology, crystallite sizes and stabilized a higher temperature (tetragonal and cubic) phases was studied. Thermal decomposition, band structure and functional groups were analyzed by Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Thermo-gravimetric analysis (TGA) and Fourier transform infrared (FT-IR). The crystal structure was determined using X-ray diffraction. The morphology and the particle size were studied using (SEM) and (TEM). The shaped particles were confirmed through the SEM analysis. The transmission electron microscopic analysis confirmed the formation of the nanoparticles with the particle size. The FT-IR spectra showed the strong presence of ZrO2 nanoparticles.


2018 ◽  
Vol 12 (12) ◽  
pp. 119
Author(s):  
Carlos A. Díaz V ◽  
William F. Garzón M ◽  
Juan C. Higuita V ◽  
Elisabeth. Restrepo-Parra

In this work, a study of samples that contained cocaine camouflaged inside unidentified polymers was performed. Samples were seized at the Dorado International airport in Colombia. Cocaine was adsorbed or occluded within the matrix. The objective of this research was to extract cocaine from the matrices using soxhlet extraction method. Thereafter matrices were analyzed to determine the surface morphology before and after the extraction. Several morphological differences were exhibited between samples including both adsorbed and occluded cocaine. Moreover, changes in the surface morphology were also observed before and after cocaine extraction. The chemical elemental composition of matrices was also studied using energy dispersive spectroscopy, observing that the alkaloid was totally removed in almost all samples after the extraction process. On the other hand, Thermo gravimetric analysis also allows comparing the results obtained for the samples with patterns of pure cocaine and other polymers as CMC, PVA and HEC, finding several similarities of structural type.


Sign in / Sign up

Export Citation Format

Share Document