scholarly journals Effects of Packed Layer Structure and Submerged Zone on Nutrient Removal in Bioretention Systems with Sand, Soil and Fly Ash

Author(s):  
ZiYan Guo ◽  
XiaoJun Zuo ◽  
Xiao Wu ◽  
Jianghua Yu

Both sand and fly ash were found to be promising for phosphorus removal in bioretention systems. However, nutrient removal in bioretention systems with sand, soil and fly ash was still uncertain due to a lack of data about the influence of layer structure and submerged zone. In this study, a mixture with sand, soil and fly ash (1:1:1) was selected as the base in bioretention systems with different packed layer structures and heights of submerged zone. The comparison of multi-layered structure with mixed structure implied that the used bioretention system with multi-layered structure was superior to that with mixed structure for nitrogen and phosphorus removal. The investigation of the influence of submerged zones on nutrient removal indicated that the submerged zone could significantly improve nitrate removal efficiency with 67.52%-86.32%, while sharply reduce the removal of ammonia nitrogen (from 95.15% to 51.81%) and TP (from 88.66% to 44.50%). Overall evaluation of the effect of packed layer structures and submerged zones suggested that the bioretention system with multi-layered structure at the height of submerged zone at 20-40cm was the most satisfactory, due to its microbial environment.

2010 ◽  
Vol 113-116 ◽  
pp. 2368-2372
Author(s):  
R.P. Singh ◽  
Ying He Jiang ◽  
Xiao Peng Wen

Constructed wetlands are very useful for the removal of nutrients from treated municipal wastewater. Use of different kinds of media and macrophytes improves the efficiency of nutrient removal of constructed wetlands. Three different media (pulverized ash bricks, shale and gravel) and common reed (Phragmites spp.) were used for present research work. This macrophyte is a local weed and easily available. Uses of different media with macrophyte are very efficient for nutrient removal from treated municipal wastewater. Out of these three media used for present research pulverized fly ash bricks media was most efficient for removal of phosphorus in constructed wetland.


1990 ◽  
Vol 22 (3-4) ◽  
pp. 211-216
Author(s):  
Niels Skov Olesen

In some areas of Denmark nutrient removal is required even for very small wastewater plants, that is down to 500 pe (pe = person equivalents). The goal for the removal is 80% removal of nitrogen and 90% removal of phosphorus, or in terms of concentrations: 8 mg nitrogen/l and 1.2 mg phosphorus/l. The inlet concentrations are typically 40 mg N/l and 10 mg P/l. The paper presents the results from two such plants with a capacity of 800 pe. Phosphorus removal is made by simultaneous precipitation with ferrous sulphate. Nitrogen removal is carried out using the recirculation method. Both plants were originally rotor aerated oxidation ditches. They have been extended with a denitrification reactor and a recirculation pumping station. At present both plants have been in activity for about 3 years and with satisfactory results. Average concentrations of nitrogen (summer) and phosphorus is 7 mg/l and 0.9 mg/l respectively. Nitrogen removal seems to be a practical solution on these small plants. It is,though, sensitive to temperature and highly oxidized rain water. Phosphorus removal seems to be an easily run and relatively non-sensitive technique at least when using simultaneous precipitation.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1433
Author(s):  
Taoufik Slimani Tlemcani ◽  
Camille Justeau ◽  
Kevin Nadaud ◽  
Daniel Alquier ◽  
Guylaine Poulin-Vittrant

Flexible piezoelectric nanogenerators (PENGs) are very attractive for mechanical energy harvesting due to their high potential for realizing self-powered sensors and low-power electronics. In this paper, a PENG that is based on zinc oxide (ZnO) nanowires (NWs) is fabricated on flexible and transparent Polydimethylsiloxane (PDMS) substrate. The ZnO NWs were deposited on two different seed layer structures, i.e., gold (Au)/ZnO and tin-doped indium-oxide (ITO)/ZnO, using hydrothermal synthesis. Along with the structural and morphological analyses of ZnO NWs, the electrical characterization was also investigated for ZnO NWs-based flexible PENGs. In order to evaluate the suitability of the PENG device structure, the electrical output performance was studied. By applying a periodic mechanical force of 3 N, the ZnO NWs-based flexible PENG generated a maximum root mean square (RMS) voltage and average power of 2.7 V and 64 nW, respectively. Moreover, the comparison between the fabricated device performances shows that a higher electrical output can be obtained when ITO/ZnO seed layer structure is adopted. The proposed ZnO NWs-based PENG structure can provide a flexible and cost-effective device for supplying portable electronics.


2002 ◽  
Vol 57 (6-7) ◽  
pp. 419-424 ◽  
Author(s):  
Sadamu Takeda ◽  
Yuko Gotoh ◽  
Goro Maruta ◽  
Shuichi Takahara ◽  
Shigeharu Kittaka

The rotational behavior of the interlayer water molecules of deuterated vanadium pentoxide hydrate, V2O5.nD2O, was studied by solid-state deuterium NMR for the mono- and double-layer structures of the adsorbed water molecules. The rotational motion was anisotropic even at 355 K for both the mono- and double-layer structures. The 180° flipping motion about the C2-symmetry axis of the water molecule and the rotation around the figure axis, which makes an angle Ɵ with the C2-axis, occurred with the activation energy of (34±4) and (49±6) kJmol-1, respectively. The activation energies were almost independent of the mono- and double-layer structures of the water molecules, but the angle Ɵ made by the two axes varied from 33° for the monolayer to 25° for the double-layer at 230 K. The angle started to decrease above 250 K (e. g. the angle was 17 at 355 K for the double-layer structure). The results indicate that the average orientation of the water molecules in the two dimensional interlayer space depends on the layer structure and on the temperature. From the deuterium NMR spectrum at 130 K, the quadrupole coupling constant e2Qq/h = 240 kHz and the asymmetry parameter η= 0.12 were deduced. These values indicate the average hydrogen bond distance R(O H) = 2.0 Å for the D2O molecules in the 2D-interlayer space


2015 ◽  
Vol 93 ◽  
pp. 22-28 ◽  
Author(s):  
Natalia I. Vázquez-Rivera ◽  
Linoshka Soto-Pérez ◽  
Juliana N. St John ◽  
Omar I. Molina-Bas ◽  
Sangchul S. Hwang

Author(s):  
Jared T. Stritzinger ◽  
Janelle E. Droessler ◽  
Brian L. Scott ◽  
George S. Goff

The structural determination of the ionic liquid, caesium bis[(trifluoromethyl)sulfonyl]imide or poly[[μ4-bis[(trifluoromethyl)sulfonyl]imido]caesium(I)], Cs[N(SO2CF3)2] or Cs[Tf2N], reveals a second polymorph that also crystallizes in a layer structure possessing monoclinic P21/c symmetry at 120 K instead of C2/c for the known polymorph [Xue et al. (2002). Solid State Sci. 4, 1535–1545]. The caesium ions in the cationic layers are coordinated by the sulfonyl groups of the bistriflimide molecules from anion layers while the trifluoromethyl groups are oriented in the opposite direction, forming a non-polar surface separating the layers. The layer direction is (100).


2002 ◽  
Vol 57 (8) ◽  
pp. 914-921 ◽  
Author(s):  
P. G. Jones ◽  
J. Ossowski ◽  
P. Kus

N,N′-Dibutyl-terephthaldiamide (1), N,N′-dihexyl-terephthaldiamide (2), N,N′-di(tert-butyl)- terephthaldiamide (3), N,N,N′,N′-tetrabutyl-terephthaldiamide (4), 1,1′-terephthaloylbis- pyrrolidine (5), 1,1′-terephthaloyl-bis-piperidine (6), and 4,4′-terephthaloyl-bis-morpholine (7) have been synthesised and physicochemically characterised. The X-ray structure determinations reveal imposed inversion symmetry for compounds 1-6; compound 3 has two independent molecules with inversion symmetry in the asymmetric unit. Compounds 1-3 form classical hydrogen bonds of the type N-H···O=C, leading to a ribbon-like arrangement of molecules (1 and 2) or a layer structure (3). Compound 3 also displays a very short C-H···O interaction, a type of hydrogen bond that is also observed in compounds 4-7, which lack classical donors; thereby compounds 4-6 form layer structures and 7 a complex threedimensional network.


2018 ◽  
Vol 34 (5) ◽  
pp. 725-732 ◽  
Author(s):  
K. Y. Chen ◽  
T. H. Lin ◽  
C. Y. Yang ◽  
Y. W. Kuo ◽  
U. Lei

AbstractHemostasis, a process which causes bleeding to stop, can be enhanced using chitosan; but the detailed mechanism is unclear. Red blood cells (RBCs) adhere to chitosan because of their opposite charges, but the adhesion force is small, 3.83 pN as measured here using an optical tweezer, such that the direct adhesion cannot be the sole cause for hemostasis. However, it was observed in this study that layer structures of aggregated RBCs were formed next to chitosan objects in both static and flowing environments, but not formed next to cotton and rayon yarns. The layer structure is the clue for the initiation of hemostatsis. Through the supporting measurements of zeta potentials of RBCs and pH's using blood-chitosan mixtures, it is proposed here that the formation of the RBC layer structure next to chitosan objects is due to the reduction of repulsive electric double layer force between RBCs, because of the association of H+ deprotonated from chitosan with COO− on RBC membrane, under the DLVO (Derjaguin-Landau-Verwey-Overbeek) theory. The results are beneficial for designing effective chitosan-based wound dressings, and also for general biomedical applications.


1997 ◽  
Vol 36 (12) ◽  
pp. 61-68 ◽  
Author(s):  
Eun Lee Sang ◽  
Soo Kim Kwang ◽  
Hwan Ahn Jae ◽  
Whoe Kim Chang

Bench scale experiments were carried out with four biological nutrient removal(BNR) units, A/O, A2/O, Phostrip and P/L units, to investigate the behavior of phosphorus in the system and to compare the characteristics of phosphorus removal in four experimental BNR units. The influent COD/T-P ratio was varied from 22 to 64 by changing COD concentration while maintaining phosphorus concentration constant. In general sidestream BNR units such as Phostrip and P/L units outperformed mainstream BNR units such as A/O and A2/O units in terms of phosphorus removal. While phosphorus release and uptake in A/O and A2/O units became less significant at low influent COD/T-P, the phosphorus release in A2/O unit was further influenced by nitrate in return sludge and thus A2/O unit required even higher influent COD/T-P ratio for luxury uptake of phosphorus. The luxury uptake of phosphorus in Phostrip and P/L units were not affected by influent COD/T-P ratio and the adverse effect of nitrate in return sludge on anaerobic phosphorus release in P/L process was not significant due to the sludge blanket in P-stripper.


Sign in / Sign up

Export Citation Format

Share Document