scholarly journals An Innovative Green Process for the Stabilization and Valorization of Organic Fraction of Municipal Solid Waste (OFMSW) I Part

Author(s):  
Carola Esposito Corcione ◽  
Francesca Ferrari ◽  
RAFFAELLA STRIANI ◽  
Stefania Minosi ◽  
Mauro Pollini ◽  
...  

This work is aimed at the development of innovative, easy and cheap methods for the stabilization, inertization and valorisation of the organic fraction of municipal solid waste (OFMSW). For the first time, two original processes for transforming the organic waste into an inert, odorless and sanitized material were here proposed. The first one, called dual step, starts with grinding of the OFMSW, by means of an industrial shredder. After being finely ground, the organic waste was exposed to a sterilization process by means of UV/ozone radiations or thermal treatment (stabilization phase) in order to obtain a complete removal of the OFMSW’s bacterial activity. By means of several microbiological analyses, the best sterilization method was chosen. The incorporation in a thermosetting matrix was, then, carried out through mixing the sterilized and finely ground organic waste into a water soluble urea formaldehyde (UF) based resin, with a formaldehyde content less than 1% wt, followed by a thermal treatment for UF-resin crosslinking (inertization phase). An alternative cheaper and easier process, called one step, was also proposed and investigated, by combining the sterilization with the curing thermal process (at higher temperature) of the thermosetting matrix. The preliminary experimental results reported in this paper suggest that both the proposed methods could be considered suitable for the production of high valorized innovative OFMSW-derived panels or bricks, that could find application in several fields, such as building or constructions materials. Finally a brief description of the prototype machinery is reported properly designed for implementing OFMSW stabilization and valorisation processes developed in this research work.

2019 ◽  
Vol 9 (21) ◽  
pp. 4516 ◽  
Author(s):  
Carola Esposito Corcione ◽  
Francesca Ferrari ◽  
Raffaella Striani ◽  
Stefania Minosi ◽  
Mauro Pollini ◽  
...  

This work is aimed at the development of innovative, easy and cheap methods for the stabilization, inertization and valorisation of the organic fraction of municipal solid waste (OFMSW). For the first time, two original processes for transforming the organic waste into an inert, odorless and sanitized material were here proposed. The first one, called dual step, starts with grinding of the OFMSW, by means of an industrial shredder. After being finely ground, the organic waste was exposed to a sterilization process by means of UV/ozone radiations or thermal treatment (stabilization phase) in order to obtain a complete removal of the OFMSW’s bacterial activity. By means of several microbiological analyses, the best sterilization method was chosen. The incorporation in a thermosetting matrix was, then, carried out through mixing the sterilized and finely ground organic waste into a water soluble urea formaldehyde (UF) based resin, with a formaldehyde content less than 1% wt, followed by a thermal treatment for UF-resin crosslinking (inertization phase). An alternative cheaper and easier process, called one step, was also proposed and investigated, by combining the sterilization with the curing thermal process (at higher temperature) of the thermosetting matrix. The preliminary experimental results reported in this paper suggest that both the proposed methods could be considered suitable for the production of high valorized innovative OFMSW-derived panels or bricks that could find application in several fields, such as building or construction materials. Finally, a brief description of the prototype machinery, properly designed for implementing OFMSW stabilization and valorization processes, is reported.


2019 ◽  
Vol 9 (18) ◽  
pp. 3702 ◽  
Author(s):  
Carola Esposito Corcione ◽  
Francesca Ferrari ◽  
Raffaella Striani ◽  
Paolo Visconti ◽  
Antonio Greco

This work is focused on the optimization of an innovative and cheap process for the valorization of the organic fraction of municipal solid waste (OFMSW), through its transformation into an odorless and environmentally compatible material to be employed for building applications or as a thermal and acoustic insulator. The process starts with the grinding of OFMSW, followed by its sterilization in order to obtain a complete removal of the bacterial activity. Afterwards, the incorporation in a catalysed thermosetting matrix is carried out by mixing the OFMSW to a water soluble urea formaldehyde based resin (UF), characterized by a formaldehyde content lower than 1% wt. The OFMSW/UF blends were firstly analysed by the dynamic rheological analyses, as a function of the content of a proper catalyst, that is able to decrease the curing temperature and time. Rheological analyses results allowed the selection of times and temperatures necessary for the polymerization (T = 60 °C, t = 1 h). The effect of the presence of different additives on both the cure process and the mechanical properties of the cured samples was finally analysed, evidencing that the OFMSW/UF composites possess improved mechanical properties in comparison to that of the neat resin.


Author(s):  
Francesca Bandini ◽  
Eren Taskin ◽  
Gabriele Bellotti ◽  
Filippo Vaccari ◽  
Chiara Misci ◽  
...  

AbstractPlastics fragmentation into smaller debris, namely, micro- and nano-plastics (MPs and NPs), is a matter of global concern because of their wide distribution in terrestrial and marine environments. The latest research has focused mainly on aquatic ecosystems, and fragmentation of bioplastics into micro- and nano-particles (MBPs and NBPs) is not considered. The distribution, concentration, fate and major source of MPs, NPS, MBPs and NBPs in agroecosystems still need to be understood. The use of composts and sewage sludge from the organic fraction of municipal solid waste (OFMSW) treatment plants as soil amendments is likely to represent a major input of these debris. The present review provides insights into the current evidence of pollution from micro- and nano-particles of both fossil- and bio-origin in the OFMSW treatment, and aims at evaluating if the recycling of organic waste and its application as a soil fertilizer outweigh the risk of pollution in terrestrial environments. Huge unpredictability exists due to the limited numbers of data on their quantification in each source of possible solution. Indeed, the major hurdles arise from the difficult to quantify the micro-, especially the nano-, particles and subsequently assess the concentrations in the environments, as well as bioaccumulation risks, and toxic effects on organisms. Graphical Abstract


2016 ◽  
Vol 10 (4) ◽  
pp. 526-545 ◽  
Author(s):  
Asit Aich ◽  
Sadhan Kumar Ghosh

Purpose The purpose of this paper is to evaluate the green energy generation potential of the organic fraction of municipal solid waste (OFMSW) through anaerobic digestion (AD) route in India and its benefits. Design/methodology/approach In this study, performances of some AD plants presently operating successfully in India have been studied in the field (Section 3.1). Primary data collected from this study has been used to evaluate the biogas generation potential of OFMSW in Indian condition (Section 4). To ensure the validity, this gas generation potential has been compared with the gas yield data observed by the other researchers and with the gas yields of AD plants of some technology providers at some parts of the world (Section 4.1). From the future population projection (year 2030) and the future per capita waste generation rate obtained from the literature survey, estimation has been made for future quantity of municipal solid waste (MSW) (year 2030) (Section 2.3). Based on these data, the green energy generation potential from the bio-degradable portion of MSW through AD route, in India, has been evaluated (Section 4.2), and its economic and environmental benefits have been analyzed (Section 5) . Findings This secondary research work reveals that from the bio-degradable portion of MSW, India can generate about 583 MW of green energy daily and produce about 5.1 mil MT of bio fertilizer per annum presently, and these may go up to 2,273 MW and 19.5 mil MT, respectively, in the year 2030. Generation of green energy from OFMSW, in India, may save coal consumption of about 3.04 mil MT and reduce 35.42 mil MT of CO2 emissions per annum presently. Moreover, utilization of the bio-degradable portion of the MSW stream may save about 550 acres (2.23 sq. km) of landfill area per year presently and in total may save about 8,182 hectare (82.5 sq. km) of landfill area during the period of 15 years time. Research limitations/implications The population growth and future per capita waste generation rate are based on census report of Govt of India and survey report of World Bank, respectively. Separate collection of bio-degradable portion of MSW has not yet been developed properly in India. Practical implications This study reveals that in India, the high-moisture-content, low-calorific-value bio-degradable waste in India can be used for the generation of substantial amount of green energy in India, which in addition to financial gains would reduce the waste quantity at landfill site, conserve natural resources, save land, reduce green house gas emission, generate employment and help to protect environment. Considering these benefits and advantages, evaluated in this study, policy makers and city managers may review their approaches toward solid waste management system of their cities to meet the challenges of huge increase of MSW in the years to come in India. More research works may be initiated to improve the AD system of organic waste, and more capital may be employed in waste management business in India. Originality/value Numbers of research works have been carried out by other researchers for estimation of energy generation potential through AD of OFMSW for different countries; but no such work could be found to identify such potential and its benefits in India. This research work demonstrates how MSW can be used as a wealth for green energy production in India. The originality of this paper is the analysis of green energy generation potential from the low calorific value MSW in India.


2016 ◽  
Vol 2 (2) ◽  
pp. 39-44
Author(s):  
Oscar Cabeza ◽  
◽  
Alfredo Alonso ◽  
Yoel Lastre ◽  
Jorge Medina ◽  
...  

2020 ◽  
Vol 5 (4) ◽  
pp. 202-209
Author(s):  
Alexander Topal ◽  
◽  
Iryna Holenko ◽  
Luidmyla Haponych ◽  
◽  
...  

For the municipal solid waste (MSW) to be used in a proper way, it is necessary to implement clean technologies capable of thermal treatment of MSW and RDF in order to produce heat and electricity while meeting current ecological requirements. Nowadays, a number of technologies for MSW/RDF thermal treating are being used worldwide. Among them, the most proven technologies, applicable for industrial introduction, have been considered while analyzing their advantages/ disadvantages accounting for local conditions of Ukraine.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jon Kepa Izaguirre ◽  
Leire Barañano ◽  
Sonia Castañón ◽  
José A. L. Santos ◽  
M. Teresa Cesário ◽  
...  

AbstractThe management of municipal solid waste is a major logistic and environmental problem worldwide. Nonetheless, the organic fraction of municipal solid waste (OFMSW) is a valuable source of nutrients which can be used for a variety of purposes, according to the Circular Economy paradigm. Among the possible applications, the bioproduction of a biodegradable polyester, poly(3-hydroxybutyrate) [P(3HB)], using OFMSW as carbon platform is a promising strategy. Here, an economic and environmental assessment of bacterial P(3HB) production from OFMSW is presented based on previously published results. The SuperPro Designer® software was used to simulate P(3HB) production under our experimental parameters. Two scenarios were proposed depending on the fermentation medium: (1) enzymatic hydrolysate of OFMSW supplemented with glucose and plum waste juice; and (2) basal medium supplemented with glucose and plum waste juice. According to our results, both scenarios are not economically feasible under our experimental parameters. In Scenario 1, the low fermentation yield, the cost of the enzymes, the labour cost and the energy consumption are the factors that most contribute to that result. In Scenario 2, the cost of the extraction solvent and the low fermentation yield are the most limiting factors. The possibility of using process waste as raw material for the generation of other products must be investigated to enhance economic feasibility. From an environmental viewpoint, the photochemical oxidation potential (derived from the use of anisole as extraction solvent) and the generation of acid rain and global warming effect (caused by the burning of fuels for power generation) are the most relevant impacts associated to P(3HB) production under our experimental parameters.


2021 ◽  
pp. 0734242X2110134
Author(s):  
Rasangika Thathsaranee Weligama Thuppahige ◽  
Sandhya Babel

The management of organic fraction of municipal solid waste (OFMSW) has continued to be a significant challenge in Sri Lanka. Anaerobic digestion is one of the management options of OFMSW. However, it generates unavoidable environmental impacts that should be addressed. The present study focuses to assess the environmental impact of a full-scale anaerobic digestion plant in Sri Lanka from a life cycle perspective. The inventory data were obtained from direct interviews and field measurements. Environmental burdens were found to be in terms of global warming potential (230 kg CO2 eq) ozone formation on human health (6.15 × 10−6 kg NO x eq), freshwater eutrophication (2.92 × 10−3 kg P eq), freshwater ecotoxicity (9.27 × 10−5 kg 1,4 DCB eq), human carcinogenic toxicity (3.98 × 10−4 kg 1,4 DCB eq), land use (1.32 × 10−4 m2 a crop eq) and water consumption (2.23 × 10−2 m3). The stratospheric ozone depletion, fine particulate matter formation, ozone formation on terrestrial ecosystems, terrestrial acidification, marine eutrophication, ecotoxicity (terrestrial and marine), human non-carcinogenic toxicity, mineral resource scarcity and fossil resource scarcity, were avoided due to electricity production. Results show that the direct gaseous emissions and digestate generation should be addressed in order to reduce the burdens from the anaerobic digestion plant. Finally, the results of the study could help in policy formation and decision-making in selecting future waste management systems in Sri Lanka.


2021 ◽  
Vol 11 (9) ◽  
pp. 3939
Author(s):  
Krzysztof Pikoń ◽  
Nikolina Poranek ◽  
Adrian Czajkowski ◽  
Beata Łaźniewska-Piekarczyk

The purpose of the study presented in this text is to show the influence of COVID-19 on waste management systems and circular economy stream, and their impact on circular economy, particularly the economic impact of the pandemic on the waste management sector, impact on circular economy objectives’ implementation as well as additional challenges like the need for hygienization of waste streams during different implementation efforts, such as changes in the municipal solid waste market and different waste processes of their disposal. Additionally, some methods—such as thermal treatment—which seemed to be not fully aligned with the circular economy approach have advantages not taken into account before. Incineration of higher volume of waste affects the waste structure and will change some of the circular economy objectives. The analysis was carried out on the example of the Polish market.


Sign in / Sign up

Export Citation Format

Share Document