scholarly journals Cell Lines for Honey Bee Virus Research

Author(s):  
Ya Guo ◽  
Cynthia L. Goodman ◽  
David W. Stanley ◽  
Bryony C. Bonning

With ongoing colony losses driven in part by the Varroa mite and the associated exacerbation of virus load, there is an urgent need to protect honey bees (Apis mellifera) from fatal levels of virus infection and from nontarget effects of insecticides used in agricultural settings. A continuously replicating cell line derived from the honey bee would provide a valuable tool for study of molecular mechanisms of virus – host interaction, for screening of antiviral agents for potential use within the hive, and for assessment of the risk of current and candidate insecticides to the honey bee. However, the establishment of a continuously replicating, honey bee cell line has proved challenging. Here we provide an overview of attempts to establish primary and continuously replicating hymenopteran cell lines, methods (including recent results) for establishing honey bee cell lines, challenges associated with the presence of latent viruses (especially Deformed wing virus), in established cell lines and methods to establish virus-free cell lines. We also describe the potential use of honey bee cell lines in conjunction with infectious clones of honey bee viruses for examination of fundamental virology.

Author(s):  
Ya Guo ◽  
Cynthia L. Goodman ◽  
David W. Stanley ◽  
Bryony C. Bonning

With ongoing colony losses driven in part by the Varroa mite and the associated exacerbation of virus load, there is an urgent need to protect honey bees (Apis mellifera) from fatal levels of virus infection and from nontarget effects of insecticides used in agricultural settings. A continuously replicating cell line derived from the honey bee would provide a valuable tool for study of molecular mechanisms of virus – host interaction, for screening of antiviral agents for potential use within the hive, and for assessment of the risk of current and candidate insecticides to the honey bee. However, the establishment of a continuously replicating, honey bee cell line has proved challenging. Here we provide an overview of attempts to establish primary and continuously replicating hymenopteran cell lines, methods for establishing honey bee cell lines, challenges associated with the presence of latent viruses (especially Deformed wing virus), in established cell lines and methods to establish virus-free cell lines. We also describe the potential use of honey bee cell lines in conjunction with infectious clones of honey bee viruses for examination of fundamental virology.


Viruses ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 236 ◽  
Author(s):  
Ya Guo ◽  
Cynthia L. Goodman ◽  
David W. Stanley ◽  
Bryony C. Bonning

With ongoing colony losses driven in part by the Varroa mite and the associated exacerbation of the virus load, there is an urgent need to protect honey bees (Apis mellifera) from fatal levels of virus infection and from the non-target effects of insecticides used in agricultural settings. A continuously replicating cell line derived from the honey bee would provide a valuable tool for the study of molecular mechanisms of virus–host interaction, for the screening of antiviral agents for potential use within the hive, and for the assessment of the risk of current and candidate insecticides to the honey bee. However, the establishment of a continuously replicating honey bee cell line has proved challenging. Here, we provide an overview of attempts to establish primary and continuously replicating hymenopteran cell lines, methods (including recent results) of establishing honey bee cell lines, challenges associated with the presence of latent viruses (especially Deformed wing virus) in established cell lines and methods to establish virus-free cell lines. We also describe the potential use of honey bee cell lines in conjunction with infectious clones of honey bee viruses for examination of fundamental virology.


Viruses ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 739 ◽  
Author(s):  
Tal Erez ◽  
Nor Chejanovsky

Many attempts to develop a reliable cell cultured-based system to study honey bee virus infections have encountered substantial difficulties. We investigated the ability of a cell line from a heterologous insect to sustain infection by a honey bee virus. For this purpose, we infected the Lepidopteran hemocytic cell line (P1) with Deformed wing virus (DWV). The genomic copies of DWV increased upon infection, as monitored by quantitative RT-PCR. Moreover, a tagged-primer-based RT-PCR analysis showed the presence of DWV negative-sense RNA in the cells, indicating virus replication. However, the DWV from infected cells was mildly infectious to P1 cells. Similar results were obtained when the virus was injected into Apis mellifera pupae. Thus, though the virus yields from the infected cells appeared to be very low, we show for the first time that DWV can replicate in a heterologous cell line. Given the availability of many other insect cell lines, our study paves the way for future exploration in this direction. In the absence of adequate A. mellifera cell lines, exploring the ability of alternative cell lines to enable honey bee virus infections could provide the means to study and understand the viral infectious cycle at the cellular level and facilitate obtaining purified isolates of these viruses.


1988 ◽  
Vol 8 (10) ◽  
pp. 4185-4189 ◽  
Author(s):  
J A Greenspan ◽  
F M Xu ◽  
R L Davidson

The molecular mechanisms of ethyl methanesulfonate-induced reversion in mammalian cells were studied by using as a target a gpt gene that was integrated chromosomally as part of a shuttle vector. Murine cells containing mutant gpt genes with single base changes were mutagenized with ethyl methanesulfonate, and revertant colonies were isolated. Ethyl methanesulfonate failed to increase the frequency of revertants for cell lines with mutant gpt genes carrying GC----AT transitions or AT----TA transversions, whereas it increased the frequency 50-fold to greater than 800-fold for cell lines with mutant gpt genes carrying AT----GC transitions and for one cell line with a GC----CG transversion. The gpt genes of 15 independent revertants derived from the ethyl methanesulfonate-revertible cell lines were recovered and sequenced. All revertants derived from cell lines with AT----GC transitions had mutated back to the wild-type gpt sequence via GC----AT transitions at their original sites of mutation. Five of six revertants derived from the cell line carrying a gpt gene with a GC----CG transversion had mutated via GC----AT transition at the site of the original mutation or at the adjacent base in the same triplet; these changes generated non-wild-type DNA sequences that code for non-wild-type amino acids that are apparently compatible with xanthine-guanine phosphoribosyltransferase activity. The sixth revertant had mutated via CG----GC transversion back to the wild-type sequence. The results of this study define certain amino acid substitutions in the xanthine-guanine phosphoribosyltransferase polypeptide that are compatible with enzyme activity. These results also establish mutagen-induced reversion analysis as a sensitive and specific assay for mutagenesis in mammalian cells.


2019 ◽  
Vol 60 (4) ◽  
pp. 451-465 ◽  
Author(s):  
Valentina Bravatà ◽  
Francesco P Cammarata ◽  
Luigi Minafra ◽  
Pietro Pisciotta ◽  
Concetta Scazzone ◽  
...  

Abstract Breast cancer (BC) is the most common cancer in women, highly heterogeneous at both the clinical and molecular level. Radiation therapy (RT) represents an efficient modality to treat localized tumor in BC care, although the choice of a unique treatment plan for all BC patients, including RT, may not be the best option. Technological advances in RT are evolving with the use of charged particle beams (i.e. protons) which, due to a more localized delivery of the radiation dose, reduce the dose administered to the heart compared with conventional RT. However, few data regarding proton-induced molecular changes are currently available. The aim of this study was to investigate and describe the production of immunological molecules and gene expression profiles induced by proton irradiation. We performed Luminex assay and cDNA microarray analyses to study the biological processes activated following irradiation with proton beams, both in the non-tumorigenic MCF10A cell line and in two tumorigenic BC cell lines, MCF7 and MDA-MB-231. The immunological signatures were dose dependent in MCF10A and MCF7 cell lines, whereas MDA-MB-231 cells show a strong pro-inflammatory profile regardless of the dose delivered. Clonogenic assay revealed different surviving fractions according to the breast cell lines analyzed. We found the involvement of genes related to cell response to proton irradiation and reported specific cell line- and dose-dependent gene signatures, able to drive cell fate after radiation exposure. Our data could represent a useful tool to better understand the molecular mechanisms elicited by proton irradiation and to predict treatment outcome


2019 ◽  
Author(s):  
Miguel Corona ◽  
Belen Branchiccela ◽  
Shayne Madella ◽  
Yanping Chen ◽  
Jay Evans

AbstractNutritional stress, and especially a dearth of pollen, is considered an important factor associated with honey bee colony losses. We used pollen-restricted colonies as a model to study the nutritional stress conditions experienced in colonies within intensively cultivated agricultural areas. This model was complemented by the establishment of an experimental design, which allowed us to uncouple the effect of nutrition, behavior and age in colonies of similar size and demography. We used this system to determine the effect of pollen restriction on workers’ behavioral development. Then, we analyzed the effect of nutritional stress, behavior and age on the expression of key physiological genes involved in the regulation of division of labor. Finally, we analyzed the effects of these variables on the expression of immune genes and the titers of honey bee viruses. Our results show that pollen restriction led to an increased number of precocious foragers and this behavioral transition was associated with important changes in the expression of nutritionally regulated physiological genes, immunity and viral titers.Vitellogenin (vg)andmajor royal jelly protein1 (mrjp1)were the most predictive markers of nutrition and behavior. The expression of immune genes was primarily affected by behavior, with higher levels in foragers. Deformed wing virus (DWV) titers were significantly affected by behavior and nutritional status, with higher titer in foragers and increased levels associated with pollen ingestion. Correlation analyses support the predominant effect of behavior on immunity and susceptibility to viral infection, revealing that both immune genes and DWV exhibited strong negative correlations with genes associated with nursing, but positive correlations with genes associated with foraging. Our results provide valuable insights into the physiological mechanisms by which nutritional stress induce precocious foraging and increased susceptibility to viral infections.


Insects ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 239 ◽  
Author(s):  
Alexis Beaurepaire ◽  
Niels Piot ◽  
Vincent Doublet ◽  
Karina Antunez ◽  
Ewan Campbell ◽  
...  

In the past centuries, viruses have benefited from globalization to spread across the globe, infecting new host species and populations. A growing number of viruses have been documented in the western honey bee, Apis mellifera. Several of these contribute significantly to honey bee colony losses. This review synthetizes the knowledge of the diversity and distribution of honey-bee-infecting viruses, including recent data from high-throughput sequencing (HTS). After presenting the diversity of viruses and their corresponding symptoms, we surveyed the scientific literature for the prevalence of these pathogens across the globe. The geographical distribution shows that the most prevalent viruses (deformed wing virus, sacbrood virus, black queen cell virus and acute paralysis complex) are also the most widely distributed. We discuss the ecological drivers that influence the distribution of these pathogens in worldwide honey bee populations. Besides the natural transmission routes and the resulting temporal dynamics, global trade contributes to their dissemination. As recent evidence shows that these viruses are often multihost pathogens, their spread is a risk for both the beekeeping industry and the pollination services provided by managed and wild pollinators.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3550-3550
Author(s):  
Vadim Markovtsov ◽  
Diane Yu ◽  
Marina Gelman ◽  
Wayne Lang ◽  
Vanessa C. Taylor ◽  
...  

Abstract Limited options provided by the current standard of care for the patients suffering from myeloproliferative diseases (MPDs) prompted an extensive search for the underlying molecular mechanisms of these disorders. Recent discovery of a single activating mutation (V617F) in JAK2 kinase gene associated with the development of the polycythemia vera (PV), essential thrombocythemia (ET) and chronic idiopathic myelofibrosis (CIMF) opened up a possibility to develop highly targeted therapies against these debilitating ailments. To that end, we engineered cytokine-independent Ba/F3 cell line expressing the V617F mutant of JAK2 to screen a focused small molecule library for potential inhibitors of JAK2 V617F -dependent proliferation. We confirmed the ability of hit compounds to inhibit proliferation of JAK2-dependent tumor cell lines using UKE-1 and SET-2 cells carrying the V617F JAK2 mutation. A FACS-based phosphoSTAT5 assay was then used to demonstrate that the hits directly targeted mutant JAK2. JAK3 activity of each compound was evaluated in IL-2-dependent CTLL-2 cell line using phosphoSTAT5 FACS and proliferation assays. To avoid hits with nonspecific antiproliferative activity, the hits were tested in JAK2-independent MOLT4, A549 and H1299 cell lines. Compound hits with the desirable properties were further evaluated for their ability to inhibit JAK2, JAK3 and other kinases in the context of T cell, B cell, or mast cell activation using a variety of cell-based assays as well as in the in vitro biochemical assays. We identified a number of compounds that potently inhibit growth of the two V617F mutant cell lines with EC50s varying from 20 to 500 nM, but do not affect proliferation of control cell lines MOLT4, A549 and H1299 to the same degree. These compounds induce strong and highly specific suppression of STAT5 phosphorylation with IC50s of 10 to 200 nM in SET-2 and V617F JAK2 expressing Ba/F3 cells. One of the hits with the desirable biological and pharmacokinetic profiles was further evaluated in V617F JAK2 Ba/F3 engraftment mouse model where it demonstrated significant extension of survival at 150 and 200 mg/kg bid. Such potent JAK2 inhibitors could become the basis for the next generation of compounds targeting JAK2-dependent myeloproliferative diseases.


2017 ◽  
Vol 91 (16) ◽  
Author(s):  
Emily J. Remnant ◽  
Mang Shi ◽  
Gabriele Buchmann ◽  
Tjeerd Blacquière ◽  
Edward C. Holmes ◽  
...  

ABSTRACT Understanding the diversity and consequences of viruses present in honey bees is critical for maintaining pollinator health and managing the spread of disease. The viral landscape of honey bees (Apis mellifera) has changed dramatically since the emergence of the parasitic mite Varroa destructor, which increased the spread of virulent variants of viruses such as deformed wing virus. Previous genomic studies have focused on colonies suffering from infections by Varroa and virulent viruses, which could mask other viral species present in honey bees, resulting in a distorted view of viral diversity. To capture the viral diversity within colonies that are exposed to mites but do not suffer the ultimate consequences of the infestation, we examined populations of honey bees that have evolved naturally or have been selected for resistance to Varroa. This analysis revealed seven novel viruses isolated from honey bees sampled globally, including the first identification of negative-sense RNA viruses in honey bees. Notably, two rhabdoviruses were present in three geographically diverse locations and were also present in Varroa mites parasitizing the bees. To characterize the antiviral response, we performed deep sequencing of small RNA populations in honey bees and mites. This provided evidence of a Dicer-mediated immune response in honey bees, while the viral small RNA profile in Varroa mites was novel and distinct from the response observed in bees. Overall, we show that viral diversity in honey bee colonies is greater than previously thought, which encourages additional studies of the bee virome on a global scale and which may ultimately improve disease management. IMPORTANCE Honey bee populations have become increasingly susceptible to colony losses due to pathogenic viruses spread by parasitic Varroa mites. To date, 24 viruses have been described in honey bees, with most belonging to the order Picornavirales. Collapsing Varroa-infected colonies are often overwhelmed with high levels of picornaviruses. To examine the underlying viral diversity in honey bees, we employed viral metatranscriptomics analyses on three geographically diverse Varroa-resistant populations from Europe, Africa, and the Pacific. We describe seven novel viruses from a range of diverse viral families, including two viruses that are present in all three locations. In honey bees, small RNA sequences indicate that these viruses are processed by Dicer and the RNA interference pathway, whereas Varroa mites produce strikingly novel small RNA patterns. This work increases the number and diversity of known honey bee viruses and will ultimately contribute to improved disease management in our most important agricultural pollinator.


Reproduction ◽  
2016 ◽  
Vol 152 (2) ◽  
pp. R31-R40 ◽  
Author(s):  
Hong Wang ◽  
Liping Wen ◽  
Qingqing Yuan ◽  
Min Sun ◽  
Minghui Niu ◽  
...  

Within the seminiferous tubules there are two major cell types, namely male germ cells and Sertoli cells. Recent studies have demonstrated that male germ cells and Sertoli cells can have significant applications in treating male infertility and other diseases. However, primary male germ cells are hard to proliferatein vitroand the number of spermatogonial stem cells is scarce. Therefore, methods that promote the expansion of these cell populations are essential for their use from the bench to the bed side. Notably, a number of cell lines for rodent spermatogonia, spermatocytes and Sertoli cells have been developed, and significantly we have successfully established a human spermatogonial stem cell line with an unlimited proliferation potential and no tumor formation. This newly developed cell line could provide an abundant source of cells for uncovering molecular mechanisms underlying human spermatogenesis and for their utilization in the field of reproductive and regenerative medicine. In this review, we discuss the methods for establishing spermatogonial, spermatocyte and Sertoli cell lines using various kinds of approaches, including spontaneity, transgenic animals with oncogenes, simian virus 40 (SV40) large T antigen, the gene coding for a temperature-sensitive mutant ofp53, telomerase reverse gene (Tert), and the specific promoter-based selection strategy. We further highlight the essential applications of these cell lines in basic research and translation medicine.


Sign in / Sign up

Export Citation Format

Share Document