scholarly journals Modeling of Stochastic Temperature and Heat Stress directly underneath Agrivoltaic conditions with Orthosiphon Stamineus Crops Cultivation

Author(s):  
Noor Fadzlinda Othman ◽  
Mohammad Effendy Yaacob ◽  
Ahmad Suhaizi Mat Su ◽  
Juju Nakasha Jaafar ◽  
Hashim Hizam ◽  
...  

This paper shares some new information on the ambient temperature profile and the heat stress occurrences directly underneath ground-mounted Solar Photovoltaic (PV) Arrays (monocrystalline-based) focusing on different temperature levels. A common ground for this work lies on the fact that 10C increase of PV cell temperature results in reduction of 0.5% energy conversion efficiency thus any means of natural cooling mechanism would gain much benefit especially to the Solar Farm operators. Transpiration process plays an important role in the cooling of green plants where in average it could dissipate around 32.9% of the total solar energy absorbed by the leaf making it a good natural cooling mechanism. This condition is relatively applied for herbs specifically for this project, Orthosiphon Stamineus or generally known as Java Tea are used as the high value crops. The thermal process via convective heat and mass exchange of leaves with the environment is relevant for a better understanding of plant physiological processes in response to environmental conversion factors for a wide range of applications. An important fact for plant heat stress with respect to the Ambient temperature is that the range lies between 10 C to 15 C above the surrounding value. This heat stress condition is relatively important and should be modelled in crops-energy integration. Agrivoltaic concept is a system that combines commercial agriculture and photovoltaic electricity generation in the same space. The concept is in line with the Kyoto Protocol and the United Nation Sustainable Development Goals (UN-SDG) which highlights the clean energy and sustainable urban living. The integration of agrivoltaic systems would optimize the yield, improving clean system efficiency and solving the issue of land resource sustainability. The PV bottom surface temperature are the main source of dissipated heat as shown in the thermal images recorded at 5 minutes interval at 3 sampling time. Statistical analysis shows that the Thermal correlations for transpiration process and heat stress occurrences between PV bottom surface and plant height will be an important finding for large scale plant cultivation in agrivoltaic farms.

Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1472
Author(s):  
Noor Fadzlinda Othman ◽  
Mohammad Effendy Yaacob ◽  
Ahmad Suhaizi Mat Su ◽  
Juju Nakasha Jaafar ◽  
Hashim Hizam ◽  
...  

This paper presents the field measured data of the ambient temperature profile and the heat stress occurrences directly underneath ground-mounted solar photovoltaic (PV) arrays (monocrystalline-based), focusing on different temperature levels. A previous study has shown that a 1 °C increase in PV cell temperature results in a reduction of 0.5% in energy conversion efficiency; thus, the temperature factor is critical, especially to solar farm operators. The transpiration process also plays an important role in the cooling of green plants where, on average, it could dissipate a significant amount of the total solar energy absorbed by the leaves, making it a good natural cooling mechanism. It was found from this work that the PV system’s bottom surface temperature was the main source of dissipated heat, as shown in the thermal images recorded at 5-min intervals at three sampling times. A statistical analysis further showed that the thermal correlation for the transpiration process and heat stress occurrences between the PV system’s bottom surface and plant height will be an important factor for large scale plant cultivation in agrivoltaic farms.


2016 ◽  
Author(s):  
David Karig ◽  
Seneca Bessling ◽  
Peter Thielen ◽  
Sherry Zhang ◽  
Joshua Wolfe

Many biotechnology capabilities are limited by stringent storage needs of reagents, largely prohibiting use outside of specialized laboratories. Focusing on a large class of protein-based biotechnology applications, we address this issue by developing a method for preserving cell-free protein expression systems under months of heat stress. Our approach realizes an unprecedented degree of long term heat stability by leveraging the sugar alcohol trehalose, a simple, low-cost, open-air drying step, and strategic separation of sets of reaction components during drying. The resulting preservation capacity opens the door for efficient production of a wide range of on-demand proteins under adverse conditions, for instance during emergency outbreaks or in remote or otherwise inaccessible locations. As such, our preservation method stands to advance a great number of different cell-free technologies, including remediation efforts, point of care therapeutics, and large-scale biosensing. To demonstrate this application potential, we use cell-free reagents subjected to months of heat stress and atmospheric conditions to produce sufficient concentrations of a pyocin protein to kill Pseudomonas aeruginosa, one of the most troublesome pathogens for traumatic and burn wound injuries. Our work makes possible new biotechnology applications that demand both ruggedness and scalability.


2019 ◽  
Author(s):  
M. Polupan ◽  
V. Velychko

The textbook is devoted to the soil resources of Ukraine, as an indispensable natural and economic potential for use in agricultural production to meet the needs of society with food products. Their great diversity is shown due to the component composition regarding the zonation of the ecological and genetic status of soils. Presence for the soil resources of functionally systematic interrelation between ecological conditions of the formation of agronomic properties and their productive capacity have been proved. Due to a large amount of information, the textbook is conventionally divided into two parts. The second part of the textbook presents the genetic ecological-substantive classification of soils of Ukraine as a parametric system of their differentiation in the context of the hierarchy of taxonomic units on the basis of adequacy between quantitative indicators of their properties and conditions of formation. Therefore, soil nomenclature is a resource indicator. On the basis of soil ecological zoning, 6 successive levels of territorial differentiation of soil cover were established according to the principle of soil bodies adequacy to environmental conditions. Each selected structural unit of the pedosphere (zone, subzone, facies, province, pedopotsella, and pedorotope) is characterized by specific features of the properties and parameters of natural factors of their formation. Therefore, in the designated territories, they in the aggregate cause the formation of different agricultural potential resource parameters. Therefore, soil-ecological zoning is the basic basis for the differentiation of land resources by natural and efficient soil fertility. Zonality as a factor in soil geography by ecological-genetic status. Therefore, the characteristics of soils in the textbook are given within the soil-ecological zones, their morphological and quantitative diagnostics and agro-soil potential of the basic agricultural crops. Specialization in agriculture is a strategic measure of the efficient use of soil resources. Zones of specialization of agriculture of Ukraine in accordance with soil and ecological conditions. Land resource monitoring and large-scale soil cover research are strategic measures for its effective balanced use. The textbook “Ukrainian Agronomic Soil Science” presents basic information about soil resources of Ukraine in the aspect of agronomic orientation regarding their zonally determined ecological-genetic status of soils, their properties, productive capacity, protection, and increase of fertility. It is recommended for the preparation of bachelors in agronomic higher education institutions of II–IV levels of accreditation in the field of “Agronomy”, as well as for biological, geographical and other higher educational establishments, graduate students and a wide range of specialists related to the land cadastre of Ukraine, fertility assessment rational use of soils.


Author(s):  
V. C. Kannan ◽  
A. K. Singh ◽  
R. B. Irwin ◽  
S. Chittipeddi ◽  
F. D. Nkansah ◽  
...  

Titanium nitride (TiN) films have historically been used as diffusion barrier between silicon and aluminum, as an adhesion layer for tungsten deposition and as an interconnect material etc. Recently, the role of TiN films as contact barriers in very large scale silicon integrated circuits (VLSI) has been extensively studied. TiN films have resistivities on the order of 20μ Ω-cm which is much lower than that of titanium (nearly 66μ Ω-cm). Deposited TiN films show resistivities which vary from 20 to 100μ Ω-cm depending upon the type of deposition and process conditions. TiNx is known to have a NaCl type crystal structure for a wide range of compositions. Change in color from metallic luster to gold reflects the stabilization of the TiNx (FCC) phase over the close packed Ti(N) hexagonal phase. It was found that TiN (1:1) ideal composition with the FCC (NaCl-type) structure gives the best electrical property.


Author(s):  
О. Кravchuk ◽  
V. Symonenkov ◽  
I. Symonenkova ◽  
O. Hryhorev

Today, more than forty countries of the world are engaged in the development of military-purpose robots. A number of unique mobile robots with a wide range of capabilities are already being used by combat and intelligence units of the Armed forces of the developed world countries to conduct battlefield intelligence and support tactical groups. At present, the issue of using the latest information technology in the field of military robotics is thoroughly investigated, and the creation of highly effective information management systems in the land-mobile robotic complexes has acquired a new phase associated with the use of distributed information and sensory systems and consists in the transition from application of separate sensors and devices to the construction of modular information subsystems, which provide the availability of various data sources and complex methods of information processing. The purpose of the article is to investigate the ways to increase the autonomy of the land-mobile robotic complexes using in a non-deterministic conditions of modern combat. Relevance of researches is connected with the necessity of creation of highly effective information and control systems in the perspective robotic means for the needs of Land Forces of Ukraine. The development of the Armed Forces of Ukraine management system based on the criteria adopted by the EU and NATO member states is one of the main directions of increasing the effectiveness of the use of forces (forces), which involves achieving the principles and standards necessary for Ukraine to become a member of the EU and NATO. The inherent features of achieving these criteria will be the transition to a reduction of tasks of the combined-arms units and the large-scale use of high-precision weapons and land remote-controlled robotic devices. According to the views of the leading specialists in the field of robotics, the automation of information subsystems and components of the land-mobile robotic complexes can increase safety, reliability, error-tolerance and the effectiveness of the use of robotic means by standardizing the necessary actions with minimal human intervention, that is, a significant increase in the autonomy of the land-mobile robotic complexes for the needs of Land Forces of Ukraine.


1994 ◽  
Vol 29 (12) ◽  
pp. 149-156 ◽  
Author(s):  
Marcus Höfken ◽  
Katharina Zähringer ◽  
Franz Bischof

A novel agitating system has been developed which allows for individual or combined operation of stirring and aeration processes. Basic fluid mechanical considerations led to the innovative hyperboloid design of the stirrer body, which ensures high efficiencies in the stirring and the aeration mode, gentle circulation with low shear forces, excellent controllability, and a wide range of applications. This paper presents the basic considerations which led to the operating principle, the technical realization of the system and experimental results in a large-scale plant. The characteristics of the system and the differences to other stirring and aeration systems are illustrated. Details of the technical realization are shown, which conform to the specific demands of applications in the biological treatment of waste water. Special regard is given to applications in the upgrading of small compact waste water treatment plants.


2012 ◽  
Vol 9 (1) ◽  
pp. 175-180
Author(s):  
Yu.D. Chashechkin

According to the results of visualization of streams, the existence of structures in a wide range of scales is noted: from galactic to micron. The use of a fundamental system of equations is substantiated based on the results of comparing symmetries of various flow models with the usage of theoretical group methods. Complete solutions of the system are found by the methods of the singular perturbations theory with a condition of compatibility, which determines the characteristic equation. A comparison of complete solutions with experimental data shows that regular solutions characterize large-scale components of the flow, a rich family of singular solutions describes formation of the thin media structure. Examples of calculations and observations of stratified, rotating and multiphase media are given. The requirements for the technique of an adequate experiment are discussed.


Author(s):  
Eun-Young Mun ◽  
Anne E. Ray

Integrative data analysis (IDA) is a promising new approach in psychological research and has been well received in the field of alcohol research. This chapter provides a larger unifying research synthesis framework for IDA. Major advantages of IDA of individual participant-level data include better and more flexible ways to examine subgroups, model complex relationships, deal with methodological and clinical heterogeneity, and examine infrequently occurring behaviors. However, between-study heterogeneity in measures, designs, and samples and systematic study-level missing data are significant barriers to IDA and, more broadly, to large-scale research synthesis. Based on the authors’ experience working on the Project INTEGRATE data set, which combined individual participant-level data from 24 independent college brief alcohol intervention studies, it is also recognized that IDA investigations require a wide range of expertise and considerable resources and that some minimum standards for reporting IDA studies may be needed to improve transparency and quality of evidence.


The Les Houches Summer School 2015 covered the emerging fields of cavity optomechanics and quantum nanomechanics. Optomechanics is flourishing and its concepts and techniques are now applied to a wide range of topics. Modern quantum optomechanics was born in the late 70s in the framework of gravitational wave interferometry, initially focusing on the quantum limits of displacement measurements. Carlton Caves, Vladimir Braginsky, and others realized that the sensitivity of the anticipated large-scale gravitational-wave interferometers (GWI) was fundamentally limited by the quantum fluctuations of the measurement laser beam. After tremendous experimental progress, the sensitivity of the upcoming next generation of GWI will effectively be limited by quantum noise. In this way, quantum-optomechanical effects will directly affect the operation of what is arguably the world’s most impressive precision experiment. However, optomechanics has also gained a life of its own with a focus on the quantum aspects of moving mirrors. Laser light can be used to cool mechanical resonators well below the temperature of their environment. After proof-of-principle demonstrations of this cooling in 2006, a number of systems were used as the field gradually merged with its condensed matter cousin (nanomechanical systems) to try to reach the mechanical quantum ground state, eventually demonstrated in 2010 by pure cryogenic techniques and a year later by a combination of cryogenic and radiation-pressure cooling. The book covers all aspects—historical, theoretical, experimental—of the field, with its applications to quantum measurement, foundations of quantum mechanics and quantum information. Essential reading for any researcher in the field.


2021 ◽  
Vol 14 ◽  
pp. 117862212110281
Author(s):  
Nieves Fernandez-Anez ◽  
Andrey Krasovskiy ◽  
Mortimer Müller ◽  
Harald Vacik ◽  
Jan Baetens ◽  
...  

Changes in climate, land use, and land management impact the occurrence and severity of wildland fires in many parts of the world. This is particularly evident in Europe, where ongoing changes in land use have strongly modified fire patterns over the last decades. Although satellite data by the European Forest Fire Information System provide large-scale wildland fire statistics across European countries, there is still a crucial need to collect and summarize in-depth local analysis and understanding of the wildland fire condition and associated challenges across Europe. This article aims to provide a general overview of the current wildland fire patterns and challenges as perceived by national representatives, supplemented by national fire statistics (2009–2018) across Europe. For each of the 31 countries included, we present a perspective authored by scientists or practitioners from each respective country, representing a wide range of disciplines and cultural backgrounds. The authors were selected from members of the COST Action “Fire and the Earth System: Science & Society” funded by the European Commission with the aim to share knowledge and improve communication about wildland fire. Where relevant, a brief overview of key studies, particular wildland fire challenges a country is facing, and an overview of notable recent fire events are also presented. Key perceived challenges included (1) the lack of consistent and detailed records for wildland fire events, within and across countries, (2) an increase in wildland fires that pose a risk to properties and human life due to high population densities and sprawl into forested regions, and (3) the view that, irrespective of changes in management, climate change is likely to increase the frequency and impact of wildland fires in the coming decades. Addressing challenge (1) will not only be valuable in advancing national and pan-European wildland fire management strategies, but also in evaluating perceptions (2) and (3) against more robust quantitative evidence.


Sign in / Sign up

Export Citation Format

Share Document