scholarly journals Heat-stable preservation of protein expression systems for portable therapeutics production

2016 ◽  
Author(s):  
David Karig ◽  
Seneca Bessling ◽  
Peter Thielen ◽  
Sherry Zhang ◽  
Joshua Wolfe

Many biotechnology capabilities are limited by stringent storage needs of reagents, largely prohibiting use outside of specialized laboratories. Focusing on a large class of protein-based biotechnology applications, we address this issue by developing a method for preserving cell-free protein expression systems under months of heat stress. Our approach realizes an unprecedented degree of long term heat stability by leveraging the sugar alcohol trehalose, a simple, low-cost, open-air drying step, and strategic separation of sets of reaction components during drying. The resulting preservation capacity opens the door for efficient production of a wide range of on-demand proteins under adverse conditions, for instance during emergency outbreaks or in remote or otherwise inaccessible locations. As such, our preservation method stands to advance a great number of different cell-free technologies, including remediation efforts, point of care therapeutics, and large-scale biosensing. To demonstrate this application potential, we use cell-free reagents subjected to months of heat stress and atmospheric conditions to produce sufficient concentrations of a pyocin protein to kill Pseudomonas aeruginosa, one of the most troublesome pathogens for traumatic and burn wound injuries. Our work makes possible new biotechnology applications that demand both ruggedness and scalability.

2017 ◽  
Vol 14 (129) ◽  
pp. 20161039 ◽  
Author(s):  
David K. Karig ◽  
Seneca Bessling ◽  
Peter Thielen ◽  
Sherry Zhang ◽  
Joshua Wolfe

Many biotechnology capabilities are limited by stringent storage needs of reagents, largely prohibiting use outside of specialized laboratories. Focusing on a large class of protein-based biotechnology applications, we address this issue by developing a method for preserving cell-free protein expression systems for months above room temperature. Our approach realizes unprecedented long-term stability at elevated temperatures by leveraging the sugar alcohol trehalose, a simple, low-cost, open-air drying step, and strategic separation of reaction components during drying. The resulting preservation capacity enables efficient production of a wide range of on-demand proteins under adverse conditions, for instance during emergency outbreaks or in remote locations. To demonstrate application potential, we use cell-free reagents subjected to months of exposure at 37°C and atmospheric conditions to produce sufficient concentrations of a pyocin protein to kill Pseudomonas aeruginosa , a troublesome pathogen for traumatic and burn wound injuries. Our work makes possible new biotechnology applications that demand ruggedness and scalability.


Author(s):  
Anastasiya Kostyusheva ◽  
Sergey Brezgin ◽  
Yurii Babin ◽  
Irina Vasil'eva ◽  
Dmitry Kostyushev ◽  
...  

Infectious diseases are a global health problem affecting billions of people. Developing rapid and sensitive diagnostic tools is key for successful patient management and curbing disease spread. Currently available diagnostics are very specific and sensitive but time-consuming and require expensive laboratory settings and well-trained personnel; thus, they are not available in resource-limited areas, for the purposes of large-scale screenings and in case of outbreaks and epidemics. Developing new, rapid, and affordable point-of-care diagnostic assays is urgently needed. This review focuses on CRISPR-based technologies and their perspectives to become platforms for point-of-care nucleic acid detection methods and as deployable diagnostic platforms that could help to identify and curb outbreaks and emerging epidemics. We describe the mechanisms and function of different classes and types of CRISPR-Cas systems, including pros and cons for developing molecular diagnostic tests and applications of each type to detect a wide range of infectious agents. Many Cas proteins (Cas9, Cas12, Cas13, Cas14) have been leveraged to create highly accurate and sensitive diagnostic tools combined with technologies of signal amplification and fluorescent, potentiometric, colorimetric, or lateral flow assay detection. In particular, the most advanced platforms -- SHERLOCK/v2, DETECTR, or CRISPR-Chip -- enable detection of attomolar amounts of pathogenic nucleic acids with specificity comparable to that of PCR but with minimal technical settings. Further developing CRISPR-based diagnostic tools promises to dramatically transform molecular diagnostics, making them easily affordable and accessible virtually anywhere in the world. The burden of socially significant diseases, frequent outbreaks, recent epidemics (MERS, SARS and the ongoing coronoviral nCov-2019 infection) urgently need the developing of express-diagnostic tools. Recently devised CRISPR-technologies represent the unprecedented opportunity to reshape epidemiological surveillance and molecular diagnostics.


2017 ◽  
Vol 56 (7) ◽  
pp. 1921-1937 ◽  
Author(s):  
Bryson C. Bates ◽  
Andrew J. Dowdy ◽  
Richard E. Chandler

AbstractLightning accompanied by inconsequential rainfall (i.e., “dry” lightning) is the primary natural ignition source for wildfires globally. This paper presents a machine-learning and statistical-classification analysis of dry and “wet” thunderstorm days in relation to associated atmospheric conditions. The study is based on daily data for lightning-flash count and precipitation from ground-based sensors and gauges and a comprehensive set of atmospheric variables that are based on ERA-Interim for the period from 2004 to 2013 at six locations in Australia. These locations represent a wide range of climatic zones (temperate, subtropical, and tropical). Quadratic surface representations and low-dimensional summary statistics were used to characterize the main features of the atmospheric fields. Four prediction skill scores were considered, and 10-fold cross validation was used to evaluate the performance of each classifier. The results were compared with those obtained by adopting the approach used in an earlier study for the U.S. Pacific Northwest. It was found that both approaches have prediction skill when tested against independent data, that mean atmospheric field quantities proved to be the most influential variables in determining dry-lightning activity, and that no single classifier or set of atmospheric variables proved to be consistently superior to its counterpart for the six sites examined here.


Author(s):  
Noor Fadzlinda Othman ◽  
Mohammad Effendy Yaacob ◽  
Ahmad Suhaizi Mat Su ◽  
Juju Nakasha Jaafar ◽  
Hashim Hizam ◽  
...  

This paper shares some new information on the ambient temperature profile and the heat stress occurrences directly underneath ground-mounted Solar Photovoltaic (PV) Arrays (monocrystalline-based) focusing on different temperature levels. A common ground for this work lies on the fact that 10C increase of PV cell temperature results in reduction of 0.5% energy conversion efficiency thus any means of natural cooling mechanism would gain much benefit especially to the Solar Farm operators. Transpiration process plays an important role in the cooling of green plants where in average it could dissipate around 32.9% of the total solar energy absorbed by the leaf making it a good natural cooling mechanism. This condition is relatively applied for herbs specifically for this project, Orthosiphon Stamineus or generally known as Java Tea are used as the high value crops. The thermal process via convective heat and mass exchange of leaves with the environment is relevant for a better understanding of plant physiological processes in response to environmental conversion factors for a wide range of applications. An important fact for plant heat stress with respect to the Ambient temperature is that the range lies between 10 C to 15 C above the surrounding value. This heat stress condition is relatively important and should be modelled in crops-energy integration. Agrivoltaic concept is a system that combines commercial agriculture and photovoltaic electricity generation in the same space. The concept is in line with the Kyoto Protocol and the United Nation Sustainable Development Goals (UN-SDG) which highlights the clean energy and sustainable urban living. The integration of agrivoltaic systems would optimize the yield, improving clean system efficiency and solving the issue of land resource sustainability. The PV bottom surface temperature are the main source of dissipated heat as shown in the thermal images recorded at 5 minutes interval at 3 sampling time. Statistical analysis shows that the Thermal correlations for transpiration process and heat stress occurrences between PV bottom surface and plant height will be an important finding for large scale plant cultivation in agrivoltaic farms.


Author(s):  
V. C. Kannan ◽  
A. K. Singh ◽  
R. B. Irwin ◽  
S. Chittipeddi ◽  
F. D. Nkansah ◽  
...  

Titanium nitride (TiN) films have historically been used as diffusion barrier between silicon and aluminum, as an adhesion layer for tungsten deposition and as an interconnect material etc. Recently, the role of TiN films as contact barriers in very large scale silicon integrated circuits (VLSI) has been extensively studied. TiN films have resistivities on the order of 20μ Ω-cm which is much lower than that of titanium (nearly 66μ Ω-cm). Deposited TiN films show resistivities which vary from 20 to 100μ Ω-cm depending upon the type of deposition and process conditions. TiNx is known to have a NaCl type crystal structure for a wide range of compositions. Change in color from metallic luster to gold reflects the stabilization of the TiNx (FCC) phase over the close packed Ti(N) hexagonal phase. It was found that TiN (1:1) ideal composition with the FCC (NaCl-type) structure gives the best electrical property.


Author(s):  
О. Кravchuk ◽  
V. Symonenkov ◽  
I. Symonenkova ◽  
O. Hryhorev

Today, more than forty countries of the world are engaged in the development of military-purpose robots. A number of unique mobile robots with a wide range of capabilities are already being used by combat and intelligence units of the Armed forces of the developed world countries to conduct battlefield intelligence and support tactical groups. At present, the issue of using the latest information technology in the field of military robotics is thoroughly investigated, and the creation of highly effective information management systems in the land-mobile robotic complexes has acquired a new phase associated with the use of distributed information and sensory systems and consists in the transition from application of separate sensors and devices to the construction of modular information subsystems, which provide the availability of various data sources and complex methods of information processing. The purpose of the article is to investigate the ways to increase the autonomy of the land-mobile robotic complexes using in a non-deterministic conditions of modern combat. Relevance of researches is connected with the necessity of creation of highly effective information and control systems in the perspective robotic means for the needs of Land Forces of Ukraine. The development of the Armed Forces of Ukraine management system based on the criteria adopted by the EU and NATO member states is one of the main directions of increasing the effectiveness of the use of forces (forces), which involves achieving the principles and standards necessary for Ukraine to become a member of the EU and NATO. The inherent features of achieving these criteria will be the transition to a reduction of tasks of the combined-arms units and the large-scale use of high-precision weapons and land remote-controlled robotic devices. According to the views of the leading specialists in the field of robotics, the automation of information subsystems and components of the land-mobile robotic complexes can increase safety, reliability, error-tolerance and the effectiveness of the use of robotic means by standardizing the necessary actions with minimal human intervention, that is, a significant increase in the autonomy of the land-mobile robotic complexes for the needs of Land Forces of Ukraine.


1994 ◽  
Vol 29 (12) ◽  
pp. 149-156 ◽  
Author(s):  
Marcus Höfken ◽  
Katharina Zähringer ◽  
Franz Bischof

A novel agitating system has been developed which allows for individual or combined operation of stirring and aeration processes. Basic fluid mechanical considerations led to the innovative hyperboloid design of the stirrer body, which ensures high efficiencies in the stirring and the aeration mode, gentle circulation with low shear forces, excellent controllability, and a wide range of applications. This paper presents the basic considerations which led to the operating principle, the technical realization of the system and experimental results in a large-scale plant. The characteristics of the system and the differences to other stirring and aeration systems are illustrated. Details of the technical realization are shown, which conform to the specific demands of applications in the biological treatment of waste water. Special regard is given to applications in the upgrading of small compact waste water treatment plants.


2012 ◽  
Vol 9 (1) ◽  
pp. 175-180
Author(s):  
Yu.D. Chashechkin

According to the results of visualization of streams, the existence of structures in a wide range of scales is noted: from galactic to micron. The use of a fundamental system of equations is substantiated based on the results of comparing symmetries of various flow models with the usage of theoretical group methods. Complete solutions of the system are found by the methods of the singular perturbations theory with a condition of compatibility, which determines the characteristic equation. A comparison of complete solutions with experimental data shows that regular solutions characterize large-scale components of the flow, a rich family of singular solutions describes formation of the thin media structure. Examples of calculations and observations of stratified, rotating and multiphase media are given. The requirements for the technique of an adequate experiment are discussed.


Author(s):  
Eun-Young Mun ◽  
Anne E. Ray

Integrative data analysis (IDA) is a promising new approach in psychological research and has been well received in the field of alcohol research. This chapter provides a larger unifying research synthesis framework for IDA. Major advantages of IDA of individual participant-level data include better and more flexible ways to examine subgroups, model complex relationships, deal with methodological and clinical heterogeneity, and examine infrequently occurring behaviors. However, between-study heterogeneity in measures, designs, and samples and systematic study-level missing data are significant barriers to IDA and, more broadly, to large-scale research synthesis. Based on the authors’ experience working on the Project INTEGRATE data set, which combined individual participant-level data from 24 independent college brief alcohol intervention studies, it is also recognized that IDA investigations require a wide range of expertise and considerable resources and that some minimum standards for reporting IDA studies may be needed to improve transparency and quality of evidence.


Sign in / Sign up

Export Citation Format

Share Document