scholarly journals Enhancing Oil Recovery with Hydrophilic Polymer-Coated Silica Nanoparticles

Author(s):  
Alberto Bila ◽  
Ole Torsæter

Nanoparticles have been proposed for enhanced oil recovery (EOR). The research has demonstrated marvelous effort to understand the mechanisms of nanoparticles-EOR. Nevertheless, gaps still exist in terms of understanding the improved fluids and fluid-rock interactions by nanoparticles, which are the key driving forces for oil mobilization. This paper investigates four types of polymer-coated silica nanoparticles as additives for water flooding oil recovery in water-wet reservoirs. A series of flooding experiments were performed with nanoparticles at 0.1 wt.% in seawater at ambient conditions. The dynamics of fluids, fluid-rock interface interactions and fluid flow behavior were characterized in order to understand oil recovery mechanisms of nanoparticles. Experimental results showed an increase in oil recovery up to 14.8%-point with nanofluid injection compared to an average of 40% of the original oil in place (OOIP) obtained from control water flood test. Moreover, the nanoparticles mobilized residual oil and incremented oil recovery up to 9.2% of the OOIP. Displacement studies show that no single mechanism could account for the EOR effect with the application of nanoparticles. Instead, the mobilization of oil seemed to occur through a combination of reduced oil/water IFT, change in the rock surface roughness and wettability to more water-wet, and microscopic flow diversion due to clogging of the pores.

Researchers have proved the significance of water injection by tuning its composition and salinity into the reservoir during smart water flooding. Once the smart water invades through the pore spaces, it destabilises crude oil-brine-rock (COBR) that leads to change in wettability of the reservoir rocks. During hydrocarbon accumulation and migration, polar organic compounds were being adsorbed on the rock surface making the reservoir oil/mixed wet in nature. Upon invasion of smart water, due to detachment of polar compounds from the rock surfaces, the wettability changes from oil/mixed wet to water wet thus enhances the oil recovery efficiency. The objective of this paper is to find optimum salinity and ionic composition of the synthetic brines at which maximum oil recovery would be observed. Three core flood studies have been conducted in the laboratory to investigate the effect of pH, composition and salinity of the injected brine over oil recovery. Every time, flooding has been conducted at reservoir formation brine salinity i.e at 1400 ppm followed by different salinities. Here, tertiary mode of flooding has been carried out for two core samples while secondary flooding for one. Results showed maximum oil recovery by 40.12% of original oil in place (OOIP) at 1050ppm brine salinity at secondary mode of flooding. So, optimized smart water has been proposed with 03 major salts, KCl, MgCl2 and CaCl2 in secondary mode of flooding that showed maximum oil recovery in terms of original oil in place.


Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 822 ◽  
Author(s):  
Alberto Bila ◽  
Jan Åge Stensen ◽  
Ole Torsæter

Recently, polymer-coated nanoparticles were proposed for enhanced oil recovery (EOR) due to their improved properties such as solubility, stability, stabilization of emulsions and low particle retention on the rock surface. This work investigated the potential of various polymer-coated silica nanoparticles (PSiNPs) as additives to the injection seawater for oil recovery. Secondary and tertiary core flooding experiments were carried out with neutral-wet Berea sandstone at ambient conditions. Oil recovery parameters of nanoparticles such as interfacial tension (IFT) reduction, wettability alteration and log-jamming effect were investigated. Crude oil from the North Sea field was used. The concentrated solutions of PSiNPs were diluted to 0.1 wt % in synthetic seawater. Experimental results show that PSiNPs can improve water flood oil recovery efficiency. Secondary recoveries of nanofluid ranged from 60% to 72% of original oil in place (OOIP) compared to 56% OOIP achieved by reference water flood. In tertiary recovery mode, the incremental oil recovery varied from 2.6% to 5.2% OOIP. The IFT between oil and water was reduced in the presence of PSiNPs from 10.6 to 2.5–6.8 mN/m, which had minor effect on EOR. Permeability measurements indicated negligible particle retention within the core, consistent with the low differential pressure observed throughout nanofluid flooding. Amott–Harvey tests indicated wettability alteration from neutral- to water-wet condition. The overall findings suggest that PSiNPs have more potential as secondary EOR agents than tertiary agents, and the main recovery mechanism was found to be wettability alteration.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5720
Author(s):  
Alberto Bila ◽  
Ole Torsæter

Nanoparticles (NPs) have been proposed for enhanced oil recovery (EOR). The research has demonstrated marvelous effort to realize the mechanisms of nanoparticles EOR. Nevertheless, gaps still exist in terms of understanding the nanoparticles-driven interactions occurring at fluids and fluid–rock interfaces. Surface-active polymers or other surface additive materials (e.g., surfactants) have shown to be effective in aiding the dispersion stability of NPs, stabilizing emulsions, and reducing the trapping or retention of NPs in porous media. These pre-requisites, together with the interfacial chemistry between the NPs and the reservoir and its constituents, can result in an improved sweep efficiency. This paper investigates four types of polymer-coated silica NPs for the recovery of oil from water-wet Berea sandstones. A series of flooding experiments was carried out with NPs dispersed at 0.1 wt.% in seawater in secondary and tertiary oil recovery modes at ambient conditions. The dynamic interactions of fluids, fluid–rock, and the transport behavior of injected fluid in the presence of NPs were, respectively, studied by interfacial tension (IFT), spontaneous imbibition tests, and a differential pressure analysis. Core flooding results showed an increase in oil recovery up to 14.8% with secondary nanofluid injection compared to 39.7% of the original oil in place (OOIP) from the conventional waterflood. In tertiary mode, nanofluids increased oil recovery up to 9.2% of the OOIP. It was found that no single mechanism could account for the EOR effect with the application of nanoparticles. Instead, the mobilization of oil seemed to occur through a combination of reduced oil/water IFT, change in the rock surface roughness and wettability, and microscopic flow diversion due to clogging of the pores.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2305
Author(s):  
Xiangbin Liu ◽  
Le Wang ◽  
Jun Wang ◽  
Junwei Su

The particles, water and oil three-phase flow behaviors at the pore scale is significant to clarify the dynamic mechanism in the particle flooding process. In this work, a newly developed direct numerical simulation techniques, i.e., VOF-FDM-DEM method is employed to perform the simulation of several different particle flooding processes after water flooding, which are carried out with a porous structure obtained by CT scanning of a real rock. The study on the distribution of remaining oil and the displacement process of viscoelastic particles shows that the capillary barrier near the location with the abrupt change of pore radius is the main reason for the formation of remaining oil. There is a dynamic threshold in the process of producing remaining oil. Only when the displacement force exceeds this threshold, the remaining oil can be produced. The flow behavior of particle–oil–water under three different flooding modes, i.e., continuous injection, alternate injection and slug injection, is studied. It is found that the particle size and the injection mode have an important influence on the fluid flow. On this basis, the flow behavior, pressure characteristics and recovery efficiency of the three injection modes are compared. It is found that by injecting two kinds of fluids with different resistance increasing ability into the pores, they can enter into different pore channels, resulting in the imbalance of the force on the remaining oil interface and formation of different resistance between the channels, which can realize the rapid recovery of the remaining oil.


RSC Advances ◽  
2020 ◽  
Vol 10 (69) ◽  
pp. 42570-42583
Author(s):  
Rohit Kumar Saw ◽  
Ajay Mandal

The combined effects of dilution and ion tuning of seawater for enhanced oil recovery from carbonate reservoirs. Dominating mechanisms are calcite dissolution and the interplay of potential determining ions that lead to wettability alteration of rock surface.


2020 ◽  
Vol 17 (3) ◽  
pp. 749-758
Author(s):  
Omolbanin Seiedi ◽  
Mohammad Zahedzadeh ◽  
Emad Roayaei ◽  
Morteza Aminnaji ◽  
Hossein Fazeli

AbstractWater flooding is widely applied for pressure maintenance or increasing the oil recovery of reservoirs. The heterogeneity and wettability of formation rocks strongly affect the oil recovery efficiency in carbonate reservoirs. During seawater injection in carbonate formations, the interactions between potential seawater ions and the carbonate rock at a high temperature can alter the wettability to a more water-wet condition. This paper studies the wettability of one of the Iranian carbonate reservoirs which has been under Persian Gulf seawater injection for more than 10 years. The wettability of the rock is determined by indirect contact angle measurement using Rise in Core technique. Further, the characterization of the rock surface is evaluated by molecular kinetic theory (MKT) modeling. The data obtained from experiments show that rocks are undergoing neutral wetting after the aging process. While the wettability of low permeable samples changes to be slightly water-wet, the wettability of the samples with higher permeability remains unchanged after soaking in seawater. Experimental data and MKT analysis indicate that wettability alteration of these carbonate rocks through prolonged seawater injection might be insignificant.


2020 ◽  
Vol 10 (17) ◽  
pp. 6087
Author(s):  
Mariam Shakeel ◽  
Peyman Pourafshary ◽  
Muhammad Rehan Hashmet

The fast depletion of oil reserves has steered the petroleum industry towards developing novel and cost-effective enhanced oil recovery (EOR) techniques in order to get the most out of reservoirs. Engineered water–polymer flooding (EWPF) is an emerging hybrid EOR technology that uses the synergetic effects of engineered water (EW) and polymers to enhance both the microscopic and macroscopic sweep efficiencies, which mainly results from: (1) the low-salinity effect and the presence of active ions in EW, which help in detachment of carboxylic oil material from the rock surface, wettability alteration, and reduction in the residual oil saturation; (2) the favorable mobility ratio resulting from the use of a polymer; and (3) the improved thermal and salinity resistance of polymers in EW. Various underlying mechanisms have been proposed in the literature for EW EOR effects in carbonates, but the main driving factors still need to be understood properly. Both polymer flooding (PF) and EW have associated merits and demerits. However, the demerits of each can be overcome by combining the two methods, known as hybrid EWPF. This hybrid technique has been experimentally investigated for both sandstone and carbonate reservoirs by various researchers. Most of the studies have shown the synergistic benefits of the hybrid method in terms of two- to four-fold decreases in the polymer adsorption, leading to 30–50% reductions in polymer consumption, making the project economically viable for carbonates. EWPF has resulted in 20–30% extra oil recovery in various carbonate coreflood experiments compared to high-salinity water flooding. This review presents insights into the use of hybrid EWPF for carbonates, the main recovery driving factors in the hybrid process, the advantages and limitations of this method, and some areas requiring further work.


2020 ◽  
Vol 10 (6) ◽  
pp. 6652-6668

Historically, smart water flooding is proved as one of the methods used to enhance oil recovery from hydrocarbon reservoirs. This method has been spread due to its low cost and ease of operation, with changing the composition and concentration of salts in the water, the smart water injection leads to more excellent compatibility with rock and fluids. However, due to a large number of sandstone reservoirs in the world and the increase of the recovery factor using this high-efficiency method, a problem occurs with the continued injection of smart water into these reservoirs a phenomenon happened in which called rock leaching. Indeed, sand production is the most common problem in these fields. Rock wettability alteration toward water wetting is considered as the main cause of sand production during the smart water injection mechanism. During this process, due to stresses on the rock surface as well as disturbance of equilibrium, the sand production in the porous media takes place. In this paper, the effect of wettability alteration of oil wetted sandstones (0.005,0.01,0.02 and 0.03 molar stearic acid in normal heptane) on sand production in the presence of smart water is fully investigated. The implementation of an effective chemical method, which is nanoparticles, have been executed to prevent sand production. By stabilizing silica nanoparticles (SiO2) at an optimum concentration of 2000 ppm in smart water (pH=8) according to the results of Zeta potential and DLS test, the effect of wettability alteration of oil wetted sandstones on sand production in the presence of smart water with nanoparticles is thoroughly reviewed. Ultimately, a comparison of the results showed that nanoparticles significantly reduced sand production.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 562 ◽  
Author(s):  
Shuang Liang ◽  
Yikun Liu ◽  
Shaoquan Hu ◽  
Anqi Shen ◽  
Qiannan Yu ◽  
...  

With the rapid growth of energy consumption, enhanced oil recovery (EOR) methods are continually emerging, the most effective and widely used was polymer flooding. However, the shortcomings were gradually exposed. A novel decorated polyacrylamide might be a better alternative than polymer. In this work, the molecular structure and the properties reflecting the viscosity of decorated polyacrylamide, interfacial tension, and emulsification were examined. In order to better understand the interactions between decorated polyacrylamide and oil as well as the displacement mechanism, the displacement experiment were conducted in the etched-glass microscale model. Moreover, the coreflooding comparison experiments between decorated polyacrylamide and polymer were performed to investigate the displacement effect. The statistical analysis showed that the decorated polyacrylamide has excellent characteristics of salt tolerance, viscosity stability, and viscosification like polymer. Besides, the ability to reduce the interfacial tension in order 10−1 and emulsification, which were more similar to surfactant. Therefore, the decorated polyacrylamide was a multifunctional polymer. The displacement process captured by camera illustrated that the decorated polyacrylamide flooded oil mainly by means of ‘pull and drag’, ‘entrainment’, and ‘bridging’, based on the mechanism of viscosifying, emulsifying, and viscoelasticity. The results of the coreflooding experiment indicated that the recovery of decorated polyacrylamide can be improved by approximately 11–16% after water flooding when the concentration was more than 800 mg/L, which was higher than that of conventional polymer flooding. It should be mentioned that a new injection mode of ‘concentration reduction multi-slug’ was first proposed, and it obtained an exciting result of increasing oil production and decreasing water-cut, the effect of conformance control was more significant.


Sign in / Sign up

Export Citation Format

Share Document