scholarly journals The Complete Mitochondrial Genome of the New Zealand Parasitic Blowfly Lucilia sericata (Insecta: Diptera: Calliphoridae)

Author(s):  
Nikola Palevich

In the present study, the complete mitochondrial genome of the New Zealand parasitic blowfly Lucilia sericata (green bottle blowfly) field strain NZ_LucSer_NP was generated using next-generation sequencing technology. The length of complete the mitochondrial genome is 15,938 bp, with 39.4% A, 13.0% C, 9.3% G, and 38.2% T nucleotide distribution. The complete mitochondrial genome consists of 13 protein-coding genes, two ribosomal RNAs, 22 transfer RNAs, and a and a 1,124 bp non-coding region, similar to most metazoan mitochondrial genomes. Phylogenetic analysis showed that L. sericata NZ_LucSer_NP forms a monophyletic cluster with the remaining six Lucilia species and the Calliphoridae are polyphyletic. This study provides the first complete mitochondrial genome sequence for a L. sericata blowfly species derived from New Zealand to facilitate species identification and phylogenetic analysis.

2020 ◽  
Author(s):  
Nikola Palevich ◽  
Luis Carvalho ◽  
Paul Maclean

ABSTRACTIn the present study, the complete mitochondrial genome of the New Zealand parasitic blowfly Calliphora vicina (blue bottle blowfly) field strain NZ_CalVic_NP was generated using next-generation sequencing technology and annotated. The 16,518 bp mitochondrial genome consists of 13 protein-coding genes, two ribosomal RNAs, 22 transfer RNAs, and a 1,689 bp non-coding region, similar to most metazoan mitochondrial genomes. Phylogenetic analysis showed that C. vicina NZ_CalVic_NP does not form a monophyletic cluster with the remaining three Calliphorinae species. The complete mitochondrial genome sequence of C. vicina NZ_CalVic_NP is a resource to facilitate future species identification research within the Calliphoridae.


2021 ◽  
Author(s):  
Haikun Li ◽  
Ruihai Yu ◽  
Peizhen Ma ◽  
Chunhua Li

Abstract The complete mitochondrial genome of Cultellus attenuates, a new aquaculture species, was sequenced and compared with mitogenomes from seven species of Heterodonta bivalve mollusk in the gene bank. The mitochondrial genome of C. attenuatus is 16888bp in length and contains 36 genes, including 12 protein-coding genes, 2 ribosomal RNAs and 22 transfer RNAs, and all genes are encoded on the same strand. In comparison with C. attenuates, the mitochondrial genes of the Sinonovacula constricta from the same family were not rearranged, but those of six other species from different family were rearranged to different degrees. The largest non-coding region of C. attenuatus is 1173bp in length and with the A + T content of 68.24%, located between nad2 and trnK. The results of phylogenetic analysis show that the C. attenuates and the S. constricta belonging to Cultellidae cluster into one branch while two species of Solenidae ( Solen grandis and Solen strictus) are clustering as their sister taxon. These data not only contribute to the understanding of the phylogenetic relationship of the Heterodonta, but also serve as a resource for the development of the genetic markers in aquaculture.


Author(s):  
Tianhong Wang ◽  
Zihao Wang ◽  
Ruwei Bai ◽  
Zhijun Yu ◽  
Jingze Liu

Haemaphysalis qinghaiensis is an endemic species and mainly inhabiting in the northwestern plateau of China, which can transmit many zoonotic pathogens and cause great harm to animals. In this study, the complete mitochondrial genome (mitogenome) of H. qinghaiensis was assembled through the Illumina HiSeq platform. The mitogenome was 14,533 bp in length, consisting of 13 protein-coding genes (PCGs), 22 tRNA genes, 2 rRNA genes and 3 noncoding regions (NCRs). The bias towards a high A+T content with 77.65% in mitogenome of H. qinghaiensis. The rearrangement of mitochondrial genes in H. qinghaiensis was consistent with other hard ticks. The phylogenetic analysis based on the concatenation of 13 PCGs from 65 tick mitogenomes showed that the H. qinghaiensis was clustered into a well-supported clade within the Haemaphysalis genus. This is the first complete mitogenome sequence of H. qinghaiensis, which provides a useful reference for understanding of the taxonomic and genetics of ticks.


Zootaxa ◽  
2017 ◽  
Vol 4329 (6) ◽  
pp. 574
Author(s):  
HYUNG JIK WOO ◽  
ANH D. NGUYEN ◽  
KUEM HEE JANG ◽  
EUN HWA CHOI ◽  
SHI HYUN RYU ◽  
...  

The millipede Anaulaciulus koreanus (Verhoeff, 1937), belonging to the family Julidae, is an endemic species of the Korean fauna. In this study, we sequence and annotate the mitochondrial genome of A. koreanus. The complete mitochondrial genome of this species is 14,916 bp in length and contains 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes (16S and 12S rRNA), and a large non-coding region. The genome has a very high A+T content (71.1%), less than of the species Brachycybe lecontii Wood, 1864 (order Platydesmida; 76.6%) and Sphaerotheriidae sp. (order Sphaerotheriida; 71.2%). In comparison with the mitochondrial gene arrangement of eight other millipede species, the whole mitochondrial gene arrangement of A. koreanus is most similar to the nemasomatid species, Antrokoreana gracilipes Verhoeff, 1938, but differs from those of the other diplopod orders. The absence of tRNACys between the ND2 and COI regions is unique to the order Polydesmida, whereas the translocation of tRNATyr to between ND2 and COI is exclusive to the Sphaerotheriida. It is also shown that the translocation of tRNAThr between ND4L and ND1 may be a synapomorphy to support a close relationship of two orders Spirobolida and Spirostreptida. 


ZooKeys ◽  
2018 ◽  
Vol 790 ◽  
pp. 127-144 ◽  
Author(s):  
Qiao-Hua Zhang ◽  
Pan Huang ◽  
Bin Chen ◽  
Ting-Jing Li

To date, only one mitochondrial genome (mitogenome) in the Eumeninae has been reported in the world and this is the first report in China. The mitogenome ofO.a.aterrimusis 17 972 bp long, and contains 38 genes, including 13 protein coding genes (PCGs), 23 tRNA genes, two rRNA genes, a long non-coding region (NCR), and a control region (CR). The mitogenome has 79.43% A + T content, its 13 PCGs use ATN as the initiation codon except forcox1using TTG, and nine genes used complete translation termination TAA and four genes have incomplete stop codon T (cox2,cox3,nad4, andcytb). Twenty-two of 23 tRNAs can form the typical cloverleaf secondary structure except fortrnS1. The CR is 1 078 bp long with 84.69% A+T content, comprising 28 bp tandem repeat sequences and 13 bp T-strech. There are two gene rearrangements which are an extratrnM2located betweentrnQandnad2and thetrnL2in the upstream ofnad1. Within all rearrangements of these mitogenomes reported in the family Vespidae, the translocation betweentrnS1andtrnEgenes only appears in Vespinae, and the translocation oftrnYin Polistinae and Vespinae. The absent codons of 13 PCGs in Polistinae are more than those both in Vespinae and Eumeninae in the family Vespidae. The study reports the complete mitogenome ofO.a.aterrimus, compares the characteristics and construct phylogenetic relationships of the mitogenomes in the family Vespidae.


2021 ◽  
Vol 8 (1) ◽  
pp. 166
Author(s):  
Erik Nanda Putra ◽  
Abdul Razak ◽  
Ramadhan Sumarmin

Carp (Cyprinus carpio L.) is one of the oldest and most commercially cultivated freshwater fish in the World. However, there are still many undetermined phylogenetic relationships and the origins of common goldfish lineages, which are an obstacle to the conservation and genetic reproduction of this species. In the process of phylogenetic analysis, researchers used mitochondrial genomes where the genomic DNA was obtained from homozygous double haploid clonal lines from domesticated Songpu strains, and the total genomic DNA was extracted and sequenced using next-generation sequencing technology. Complete mitochondrial genome sequencing of 11 individuals representing East Asia and Europe and phylogenetic analysis was performed. The purpose of this study is to provide information about the phenology of Cyprinus carpio fish, which is expected to be the basis for increasing understanding to determine the kinship relationship between Cyprinus carpio in East Asia and Europe. The results showed that the relationship between Cyprinus carpio color, Cyprinus carpio songpu mirror carp, Cyprinus carpio carpio, and Cyprinus carpio wuyuanensis was very close, this can be seen from the bootstrap value of 100%. Meanwhile, with Cyprinus carpio haematopterus has a bootstrap value of 70%. Meanwhile, with Cyprinus xingguonensis it has a bootstrap value of 66%. Furthermore, it can also be said that the Songpu mirror goldfish is closely related to C. carpio carpio which is also a member of the genus Cyprinu. The genus Cyprinu has a close relationship with the genus Catla. In the phylogenetic tree, this species of fish forms a very coherent group, supported by a high bootstrap value of 100% and an average genetic distance of 0.02.  Key words: Mitochondrial genome, Phylogenetics, general Cyprinus carpio


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1234
Author(s):  
Busu Li ◽  
Huan Wang ◽  
Long Yang ◽  
Shufang Liu ◽  
Zhimeng Zhuang

Pseudocaranx dentex (white trevally) which belongs to the Carangidae family, is an important commercial fishery and aquaculture resource in Asia. However, its evolution and population genetics have received little attention which was limited by the mitogenome information absence. Here, we sequenced and annotated the complete mitochondrial genome of P. dentex which was 16,569 bp in length, containing twenty-two tRNAs (transfer RNAs), thirteen PCGs (protein-coding genes), two rRNAs (ribosomal RNAs), and one non-coding region with conservative gene arrangement. The Ka/Ks ratio analysis among Carangidae fishes indicated the PCGs were suffering purify selection and the values were related to the taxonomic status and further influenced by their living habits. Phylogenetic analysis based on the PCGs sequences of mitogenomes among 36 species presented three major clades in Carangidae. According to the phylogenetic tree, we further analyzed the taxonomic confusion of Carangoides equula which was on the same branch with P. dentex but a different branch with Carangoides spp. We inferred Kaiwarinus equula should be the accepted name and belong to the independent Kaiwarinus genus which was the sister genus of Pseudocaranx. This work provides mitochondrial genetic information and verifies the taxonomic status of P. dentex, and further helps to recognize the phylogenetic relationship and evolutionary history of Carangidae.


ZooKeys ◽  
2020 ◽  
Vol 1005 ◽  
pp. 57-72
Author(s):  
I-Chen Wang ◽  
Hung-Du Lin ◽  
Chih-Ming Liang ◽  
Chi-Chun Huang ◽  
Rong-Da Wang ◽  
...  

The cyprinid genus Onychostoma Günther, 1896 consists of 24 valid species distributed in Southeast Asia, including Taiwan, Hainan, mainland China and the Indochina region. In the present study, we determined the complete mitochondrial genome of O. lepturum, which is 16,598 bp in length, containing 13 protein-coding genes, two rRNA genes, 22 tRNA genes and a typical control region (D-loop). To verify the molecular phylogeny of the subfamily Acrossocheilinae, we provide new insights to better understand the taxonomic status of Acrossocheilus, Onychostoma and Folifer brevifilis. The phylogenetic trees presented three major clades based on the 13 protein-coding genes from 28 Acrossocheilinae species. Clades I and II represent the Onychostoma and Acrossocheilus groups, respectively. Species of Acrossocheilus, Onychostoma and F. brevifilis are included in Clade III, which is considered as an ancestral group. This work provides genomic variation information and improves our understanding of the Acrossocheilinae mitogenome, which will be most valuable in providing new insights for phylogenetic analysis and population genetics research.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7031 ◽  
Author(s):  
Thanh Hoa Le ◽  
Khue Thi Nguyen ◽  
Nga Thi Bich Nguyen ◽  
Huong Thi Thanh Doan ◽  
Takeshi Agatsuma ◽  
...  

We present the complete mitochondrial genome of Paragonimus ohirai Miyazaki, 1939 and compare its features with those of previously reported mitochondrial genomes of the pathogenic lung-fluke, Paragonimus westermani, and other members of the genus. The circular mitochondrial DNA molecule of the single fully sequenced individual of P. ohirai was 14,818 bp in length, containing 12 protein-coding, two ribosomal RNA and 22 transfer RNA genes. As is common among trematodes, an atp8 gene was absent from the mitogenome of P. ohirai and the 5′ end of nad4 overlapped with the 3′ end of nad4L by 40 bp. Paragonimusohirai and four forms/strains of P. westermani from South Korea and India, exhibited remarkably different base compositions and hence codon usage in protein-coding genes. In the fully sequenced P. ohirai individual, the non-coding region started with two long identical repeats (292 bp each), separated by tRNAGlu. These were followed by an array of six short tandem repeats (STR), 117 bp each. Numbers of the short tandem repeats varied among P. ohirai individuals. A phylogenetic tree inferred from concatenated mitochondrial protein sequences of 50 strains encompassing 42 species of trematodes belonging to 14 families identified a monophyletic Paragonimidae in the class Trematoda. Characterization of additional mitogenomes in the genus Paragonimus will be useful for biomedical studies and development of molecular tools and mitochondrial markers for diagnostic, identification, hybridization and phylogenetic/epidemiological/evolutionary studies.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jia-Jia Wang ◽  
De-Fang Li ◽  
Hu Li ◽  
Mao-Fa Yang ◽  
Ren-Huai Dai

Abstract We sequenced and annotated the first complete mitochondrial genome (mitogenome) of Ledra auditura (Hemiptera: Cicadellidae: Ledrinae) and reconstructed phylogenetic relationships among 47 species (including 2 outgroup species) on the basis of 3 datasets using maximum likelihood (ML) and Bayesian inference (BI) analyses. The complete L. auditura mitogenome (length, 16,094 bp) comprises 37 genes [13 protein-coding genes (PCGs), 22 tRNAs, and 2 rRNAs], 1 control region, and 2 long non-coding regions. The first long non-coding region (length, 211 bp) is located between tRNA-I and tRNA-Q and the second region (length, 994 bp) between tRNA-S2 and ND1. All PCGs show ATN (Met/Ile) as their start codon and TAR as their stop codon. Except tRNA-S1 (AGN), which lacks the dihydrouridine arm, all tRNAs can fold into the typical cloverleaf secondary structure. The complete L. auditura mitogenome shows a base composition bias of 76.3% A + T (A = 29.9%, T = 46.4%, G = 13.3%, and C = 10.5%), negative AT skew of −0.22, and positive GC skew of 0.12. In ML and BI analyses, L. auditura was clustered with Evacanthus heimianus (Hemiptera: Cicadellidae: Evacanthinae) with strong branch support.


Sign in / Sign up

Export Citation Format

Share Document