scholarly journals Effect of Zea Mays-Beauveria Bassiana Seed Treatment on Spodoptera Frugiperda

Author(s):  
Laiju Kuzhuppillymyal-Prabhakarankutty ◽  
Fernando H. Ferrara-Rivero ◽  
Patricia Tamez-Guerra ◽  
Ricardo Gomez-Flores ◽  
María Cristina Rodríguez-Padilla ◽  
...  

Spodoptera frugiperda is a widely distributed insect pest that causes major economic losses in various crops, particularly maize. On the other hand, Beauveria bassiana is an entomopathogenic fungus that establishes symbiotic associations with many plants and contributes to tolerance against biotic and abiotic stresses. In the present work, under field conditions, 1x106 (first trial) and 1x10⁸ (second trial) of B. bassiana (GHA strain) blastospores were used for corn’s seed inoculation. In the first field trial, a higher number of larvae were present in the negative control plants in comparison with those in B. bassiana-treated plants. No larvae were found in negative control and B. bassiana-treated plants in the second field trial. In further laboratory experiments, the effects of the B. bassiana strains GHA, in addition to a native strain (PTG4) also delivered via seed treatment in maize seedlings, on S. frugiperda growth, development, and mortality were evaluated. 1x10⁶ B. bassiana blastospores were used to inoculate maize seeds, which were germinated and grown to seedlings under growth chamber conditions. Third-instar S. frugiperda larvae were allowed to feed on B. bassiana-treated and -untreated (negative control) seedlings until reaching 6th instar and transferred to artificial diet until reaching adult stage. Results showed that larvae feeding on B. bassiana strain PTG4 prolonged their larval stage. Furthermore, feeding with plants treated with B. bassiana strains yielded fewer S. frugiperda male moths and the female moths emerged with altered wings, compared with the untreated control. In conclusion, seed treatment with B. bassiana in maize reduced S. frugiperda infestation of maize plants in field trials. Besides S. frugiperda development was affected in laboratory trials.

2021 ◽  
Vol 11 (7) ◽  
pp. 2887
Author(s):  
Laiju Kuzhuppillymyal-Prabhakarankutty ◽  
Fernando H. Ferrara-Rivero ◽  
Patricia Tamez-Guerra ◽  
Ricardo Gomez-Flores ◽  
María Cristina Rodríguez-Padilla ◽  
...  

Spodoptera frugiperda is a widely distributed insect pest that causes major economic losses in various crops, particularly maize. On the other hand, Beauveria bassiana is an entomopathogenic fungus that establishes symbiotic associations with many plants and contributes to tolerance against biotic and abiotic stresses. In the present work, in laboratory experiments, the effects of the B. bassiana strain GHA, in addition to a native strain (PTG4), delivered via seed treatment in maize seedlings, were evaluated on S. frugiperda growth, development, and mortality. We inoculated maize seeds with 1 × 106B. bassiana blastospores; then these seeds were germinated and grown to seedlings under growth chamber conditions. Third-instar S. frugiperda larvae were allowed to feed on B. bassiana-treated and -untreated (negative control) seedlings until reaching the sixth instar and transferred to an artificial diet until reaching adult stage. Results showed that larvae feeding on B. bassiana strain PTG4-treated plants prolonged their larval stage. Furthermore, feeding on plants treated with B. bassiana strains yielded fewer S. frugiperda male moths compared with feeding with the untreated control plants. Under field conditions, 1 × 106 (first trial) and 1 × 108 (second trial) of B. bassiana (GHA strain) blastospores were used for corn seed inoculation. In the first field trial, there were a higher number of larvae in the negative control plants compared to those in the plants treated with B. bassiana. No larvae were found in negative control and B. bassiana-treated plants in the second field trial. In conclusion, seed treatment with B. bassiana in maize reduced S. frugiperda infestation of maize plants in field trials. S. frugiperda development was also affected in laboratory trials.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Besma Hamrouni Assadi ◽  
Sabrine Chouikhi ◽  
Refki Ettaib ◽  
Naima Boughalleb M’hamdi ◽  
Mohamed Sadok Belkadhi

Abstract Background The misuse of chemical insecticides has developed the phenomenon of habituation in the whitefly Bemisia tabaci (Gennadius) causing enormous economic losses under geothermal greenhouses in southern Tunisia. Results In order to develop means of biological control appropriate to the conditions of southern Tunisia, the efficacy of the native strain of the predator Nesidiocoris tenuis Reuter (Hemiptera: Miridae) and two entomopathogenic fungi (EPF) Beauveria bassiana and Lecanicillium muscarium was tested against Bemisia tabaci (Gennadius). Indeed, the introduction of N. tenuis in doses of 1, 2, 3, or 4 nymphs per tobacco plant infested by the whitefly led to highly significant reduction in the population of B. tabaci, than the control devoid of predator. The efficacy of N. tenuis was very high against nymphs and adults of B. tabaci at all doses per plant with a rate of 98%. Likewise, B. bassiana and L. muscarium, compared to an untreated control, showed a very significant efficacy against larvae and adults of B. tabaci. In addition, the number of live nymphs of N. tenuis treated directly or introduced on nymphs of B. tabaci treated with the EPF remained relatively high, exceeding 24.8 nymphs per cage compared to the control (28.6). Conclusions It can be concluded that the native strain of N. tenuis and the EPF tested separately were effective against B. tabaci. Their combined use appears to be possible.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1469
Author(s):  
Silke Deketelaere ◽  
Katrijn Spiessens ◽  
Sabien Pollet ◽  
Lien Tyvaert ◽  
Luc De Rooster ◽  
...  

Verticillium wilt is one of the most important diseases of cauliflower and can lead to serious economic losses. In this study, two complementary strategies were explored to employ the antagonistic capacity of Verticillium isaacii towards Verticillium wilt of cauliflower. The first strategy focused on introducing V. isaacii Vt305 by artificial inoculation of cauliflower plantlets at the nursery stage. Two inoculum types (spores and microsclerotia of V. isaacii Vt305) and different concentrations of microsclerotia were tested in greenhouse and field trials. Seed treatment with 500 microsclerotia seed−1 led to a satisfying biocontrol level of Verticillium wilt. In addition, the PHYTO-DRIP® system was successful in delivering the microsclerotia to cauliflower seeds. The second strategy relied on the stimulation of the natural V. isaacii populations by rotating cauliflower with green manures and potato. Four green manure crops and potato were tested during multiple field experiments. Although these crops seemed to stimulate the V. isaacii soil population, this increase did not result in a control effect on Verticillium wilt of cauliflower in the short term. Importantly, our results indicate that the use of green manures is compatible with the application of V. isaacii Vt305 as biocontrol agent of Verticillium wilt in cauliflower.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2195
Author(s):  
Carolina Turatti Oliveira ◽  
Suzy Wider Machado ◽  
Cézar da Silva Bezerra ◽  
Marlon Henrique Cardoso ◽  
Octávio Luiz Franco ◽  
...  

Talisin is a storage protein from Talisia esculenta seeds that presents lectin-like and peptidase inhibitor properties. These characteristics suggest that talisin plays a role in the plant defense process, making it a multifunctional protein. This work aimed to investigate the effects of chronic intake of talisin on fifth instar larvae of Spodoptera frugiperda, considered the main insect pest of maize and the cause of substantial economic losses in several other crops. The chronic intake of talisin presented antinutritional effects on the larvae, reducing their weight and prolonging the total development time of the insects. In addition, talisin-fed larvae also showed a significant reduction in the activity of trypsin-like enzymes. Midgut histology analysis of talisin-fed larvae showed alterations in the intestinal epithelium and rupture of the peritrophic membrane, possibly causing an increase of aminopeptidase activity in the midgut lumen. Talisin also proved to be resistant to degradation by the digestive enzymes of S. frugiperda. The transcription profile of trypsin, chymotrypsin and aminopeptidase genes was also analyzed through qPCR technique. Talisin intake resulted in differential expression of at least two genes from each of these classes of enzymes. Molecular docking studies indicated a higher affinity of talisin for the less expressed enzymes.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Kennedy O. Ogolla ◽  
Peter K. Gathumbi ◽  
Robert M. Waruiru ◽  
Paul O. Okumu ◽  
Joyce Chebet ◽  
...  

There are no anticoccidial drugs labelled for rabbits in Kenya and those available are used as extra labels from poultry. The drugs are used in rabbits with limited knowledge of their efficacy and safety. The aim of this study was to determine the efficacy of sulphachloropyrazine, amprolium hydrochloride, and trimethoprim-sulphamethoxazole relative to diclazuril when used curatively against experimental and natural rabbit coccidiosis. In a controlled laboratory trial, sixty (60) rabbits were randomly allocated to six treatment groups, namely, 1A, 2B, 3C, 4D, 5E, and 6F, each with 10 rabbits. Groups 2B, 3C, 4D, 5E, and 6F were experimentally infected with mixed Eimeria species while group 1A served as uninfected-untreated (negative) control group. Four of the infected groups were treated with sulphachloropyrazine (5E), amprolium hydrochloride (2B), trimethoprim-sulphamethoxazole (6F), and diclazuril (4D) using dosages recommended by manufacturers. Group 3C served as infected-untreated (positive) control. A field efficacy trial in naturally infected rabbits was then undertaken. The results revealed that sulphachloropyrazine and diclazuril were effective against rabbit clinical coccidiosis by significantly reducing oocyst counts from 149.00±110.39 x 104 to 3.31±0.86 x 104 Eimeria spp. oocysts per gram of feces (opg) and 59.70±12.35 x 104 to 0.0±0.0 x 104 opg, respectively, in the laboratory trial. Similarly, sulphachloropyrazine and diclazuril recorded reduced oocyst counts in the field trial from 280.33±44.67 x 103 to 0.44±0.14 x 103 opg and 473.44±176.01 x 103 to 0.0±0.0 x 103 opg, respectively. Still, sulphachloropyrazine and diclazuril showed superior efficacy by registering lesion scores and fecal scores close to those of uninfected untreated control group. Trimethoprim-sulphamethoxazole recorded a satisfactory efficacy in the field trial by recording reduced oocyst counts from 266.78±37.03 x 103 to 0.75±0.11 x 103 opg but was not efficacious in the laboratory trial. Amprolium hydrochloride was not efficacious against clinical coccidiosis in both the experimental and field trials.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 298
Author(s):  
Ouorou Ganni Mariel Guera ◽  
Federico Castrejón-Ayala ◽  
Norma Robledo ◽  
Alfredo Jiménez-Pérez ◽  
Georgina Sánchez-Rivera ◽  
...  

Chemical control is the main method used to combat fall armyworm in maize crops. However, its indiscriminate use usually leads to a more complex scenario characterized by loss of its effectiveness due to the development of resistance of the insect pest, emergence of secondary pests, and reduction of the populations of natural enemies. For this reason, efforts to develop strategies for agroecological pest management such as Push–Pull are increasingly growing. In this context, the present study was carried out to evaluate field effectiveness of Push–Pull systems for S. frugiperda management in maize crops in Morelos, Mexico. In a randomized block experiment, the incidence and severity of S. frugiperda, the development and yield of maize were evaluated in nine Push–Pull systems and a maize monoculture. The Push–Pull systems presented incidence/severity values lower than those of the monoculture. Morphological development and maize yield in the latter were lower than those of most Push–Pull systems. Mombasa—D. ambrosioides, Mulato II—T. erecta, Mulato II—C. juncea, Tanzania—T. erecta and Tanzania—D. ambrosioides systems presented higher yields than those of monocultures.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Muhammad Shehzad ◽  
Muhammad Tariq ◽  
Tariq Mukhtar ◽  
Asim Gulzar

Abstract Background The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a noxious pest of cruciferous crops all over the world causing serious economic damage. Management of insect pest generally depends on chemical control; however, due to development of resistance against all types of insecticides, alternative approaches especially utilization of a microbial agent is inevitable. Results Potential of 2 entomopathogenic fungi (EPF), viz., Beauveria bassiana and Metarhizium anisopliae, was evaluated against 2nd and 3rd larval instars of P. xylostella by adopting leaf dip and direct spraying methods under laboratory conditions. Significant mortality rate was achieved by each fungus under adopted methodologies. However, B. bassiana was found to be more effective in both conditions than M. anisopliae. Highest mean corrected mortality (77.80%) was recorded, when spores of B. bassiana were sprayed on the 2nd instar larvae (LC50=1.78×104/ml) after the 6th day of treatment. Similarly, incase of M. anisopliae LC50 for the 2nd instar at the same methodology was 2.78×104/ml with a mortality percentage of 70.0%. Offspring sex ratio was non-significantly related to treatment concentration and methodology, except for the control. Conclusion Beauveria bassiana and M. anisopliae had potential to suppress P. xylostella infestations when applied appropriately. Present findings suggested that B. bassiana and M. anisopliae when sprayed on immatures of host insect had more effect as compared to leaf dip procedure. Furthermore, no significant effect of concentrations was observed on sex ratio.


2021 ◽  
Vol 807 (2) ◽  
pp. 022108
Author(s):  
Fitri ◽  
S N Aminah ◽  
T Abdullah ◽  
R Widarawati ◽  
N W Annisa

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Jones ◽  
M. T. Fountain ◽  
C. S. Günther ◽  
P. E. Eady ◽  
M. R. Goddard

AbstractDrosophila suzukii flies cause economic losses to fruit crops globally. Previous work shows various Drosophila species are attracted to volatile metabolites produced by individual fruit associated yeast isolates, but fruits naturally harbour a rich diversity of yeast species. Here, we report the relative attractiveness of D. suzukii to yeasts presented individually or in combinations using laboratory preference tests and field trapping data. Laboratory trials revealed four of 12 single yeast isolates were attractive to D. suzukii, of which Metschnikowia pulcherrima and Hanseniaspora uvarum were also attractive in field trials. Four out of 10 yeast combinations involving Candida zemplinina, Pichia pijperi, M. pulcherrima and H. uvarum were attractive in the laboratory. Whilst a combination of M. pulcherrima + H. uvarum trapped the greatest number of D. suzukii in the field, the efficacy of the M. pulcherrima + H. uvarum combination to trap D. suzukii was not significantly greater than traps primed with volatiles from only H. uvarum. While volatiles from isolates of M. pulcherrima and H. uvarum show promise as baits for D. suzukii, further research is needed to ascertain how and why flies are attracted to certain baits to optimise control efficacy.


Plant Disease ◽  
2001 ◽  
Vol 85 (7) ◽  
pp. 718-722 ◽  
Author(s):  
Sebastian Kiewnick ◽  
Barry J. Jacobsen ◽  
Andrea Braun-Kiewnick ◽  
Joyce L. A. Eckhoff ◽  
Jerry W. Bergman

Rhizoctonia crown and root rot, caused by the fungus Rhizoctonia solani AG 2-2, is one of the most damaging sugar beet diseases worldwide and causes significant economic losses in more than 25% of the sugar beet production area in the United States. We report on field trials in the years 1996 to 1999 testing both experimental fungicides and antagonistic Bacillus sp. for their potential to reduce disease severity and increase sugar yield in trials inoculated with R. solani AG 2-2. Fungicides were applied as in-furrow sprays at planting or as band sprays directed at the crown at the four-leaf stage, or four- plus eight-leaf stage, while bacteria were applied at the four-leaf stage only. The fungicides azoxystrobin and tebuconazole reduced crown and root rot disease by 50 to 90% over 3 years when used at rates of 76 to 304 g a.i./ha and 250 g a.i./ha, respectively. The disease index at harvest was reduced and the root and sugar yield increased with azoxystrobin compared with tebuconazole. The combination of azoxystrobin applied at 76 g a.i./ha and the Bacillus isolate MSU-127 resulted in best disease reduction and greatest root and sucrose yield increase.


Sign in / Sign up

Export Citation Format

Share Document