scholarly journals The Effect of Print Speed on Surface Roughness and Density Uniformity of Parts Produced Using Binder Jet 3D Printing

Author(s):  
K. Myers ◽  
A. Paterson ◽  
T. Iizuka ◽  
A. Klein

One of the main benefits of binder jetting is the ability to print quickly compared to other metal additive manufacturing methods. Demand for higher throughput continues to increase, but the effects of faster print speeds on part outcomes are not yet clearly understood. MIM powders are used to achieve optimal density and surface finish. Printing at slower speeds results in densities near 98% and average surface roughness values as low as 4 μm (Ra), in the as-sintered condition. In this study, spread speeds were varied in order to understand the effect of print speed on surface roughness. 316L D90 -22 μm powder was used to print with 3 different spread speeds, 2 different layer thicknesses, and 2 different printhead droplet sizes. The surface finish and density were quantified for the sintered parts that were oriented at 0, 22.5, and 45 degrees with respect to the Z- direction.

2021 ◽  
Vol 58 (1) ◽  
pp. 5412-5417
Author(s):  
Prabhu Swamy N R Et al.

In this study, model equations to predict average surface roughness value of abrasive water jet cut aluminium 6061 alloy are developed. Model equations are developed considering water jet pressure, abrasive flow rate and traverse speed of the jet. Model equations help in knowing average surface roughness value on the cutting and deformation wear regions. 27 abrasive water jet cutting experiments are conducted on trapezoidal shaped aluminium 6061 block. Depth of penetration values are found for all experimental cutting conditions. Average surface roughness values are found by non-contact surface roughness tester. Surface roughness testing is carried out along the length of depth of penetration.  Low and high average surface roughness values are noticed on the cutting and deformation wear regions respectively.  Smooth surface finish and rough surface finish with striations are observed on the cutting and deformation wear regions respectively.   


Author(s):  
Muhammad Hasibul Hasan ◽  
Shugata Ahmed ◽  
Ron Voldman ◽  
Mirt Mehany

The ability to use different parameters and finishing techniques in fused deposition modelling (FDM) depends largely on part geometries, materials, printing processes like Z-resolution and post processing to some extent. Low quality poor surface finish due to layer ovality, improper Z-resolution parameter selection and fill of the empty shell in three-dimensional (3D) printing, results unexpected texture and appearance. An investigation is carried out on the effects of Z-resolution (0.15 mm to 0.40 mm) and Fill parameters on flat and curved surface objects manufactured using the FDM process. Moreover, post surface treatment was performed using acetone. It was found that average surface roughness increases with increasing Z-resolution. Solid Fill can create a smoother surface as oppose to Sparse Fill. Surface roughness improves significantly after post treatment with organic solvent acetone.


Author(s):  
C J Luis Pérez ◽  
J Vivancos Calvet

The present study focuses on aspects of the surface qualities of prototypes obtained by multijet modelling (MJM) techniques. The surface finish and dimensional precision of parts obtained through these manufacturing processes are often highly important, especially in those cases where the manufactured prototypes are used as functional parts, as in the case of lost wax casting. Moreover, it is important to obtain an estimate of the average surface roughness in order to select the appropriate manufacturing parameters. Although there are many different techniques for evaluating surface roughness, one of the most commonly employed methods involves the assessment of the average surface roughness by means of stylus instruments. Prototypes were manufactured using two different MJM systems under different conditions for each prototype. After the parts were obtained, an experimental study of effective roughness was carried out. A comparative study using the same MJM systems with different accuracies was also performed in order to evaluate the capability of these rapid prototyping techniques to manufacture parts.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110118
Author(s):  
Zenan Chu ◽  
Tao Wang ◽  
Qiang He ◽  
Kai Zhao

To solve the problems of low processing efficiency and poor glass surface quality when using rare earth polishing powder to grind super-hard K9 glass. The potential, phase structure, surface morphology, and particle size distribution of the nano-rare earth polishing powder were characterized. Compare the evaluation indexes such as polishing efficiency, surface morphology, and contact angle after the polishing process is changed. The results of the comparative study show that the average surface roughness of the glass after heating ultrasonic polishing process is 0.9064 nm, the polishing rate reaches 0.748 μm/min, the average surface roughness of the glass without heating ultrasonic polishing process is 1.3175 nm, and the polishing rate reaches 0.586 μm/min, the ultrasonic assisted polishing process is superior to the conventional polishing process. The heating ultrasonic method provides experimental basis for precise and rapid processing.


Author(s):  
MAHMUT ÇELIK ◽  
HAKAN GÜRÜN ◽  
ULAŞ ÇAYDAŞ

In this study, the effects of experimental parameters on average surface roughness and material removal rate (MRR) were experimentally investigated by machining of AISI 304 stainless steel plates by magnetic abrasive finishing (MAF) method. In the study in which three different abrasive types were used (Al2O3, B4C, SiC), the abrasive grain size was changed in two different levels (50 and 80[Formula: see text][Formula: see text]m), while the machining time was changed in three different levels (30, 45, 60[Formula: see text]min). Surface roughness values of finished surfaces were measured by using three-dimensional (3D) optical surface profilometer and surface topographies were created. MRRs were measured with the help of precision scales. The abrasive particles’ condition before and after the MAF process was examined and compared using a scanning electron microscope. As a result of the study, the surface roughness values of plates were reduced from 0.106[Formula: see text][Formula: see text]m to 0.028[Formula: see text][Formula: see text]m. It was determined that the best parameters in terms of average surface roughness were 60[Formula: see text]min machining time with 50[Formula: see text][Formula: see text]m B4C abrasives, while the best result in terms of MRR was taken in 30[Formula: see text]min with 50[Formula: see text][Formula: see text]m SiC abrasives.


2019 ◽  
Vol 26 (3) ◽  
pp. 473-483
Author(s):  
Muhammad Omar Shaikh ◽  
Ching-Chia Chen ◽  
Hua-Cheng Chiang ◽  
Ji-Rong Chen ◽  
Yi-Chin Chou ◽  
...  

Purpose Using wire as feedstock has several advantages for additive manufacturing (AM) of metal components, which include high deposition rates, efficient material use and low material costs. While the feasibility of wire-feed AM has been demonstrated, the accuracy and surface finish of the produced parts is generally lower than those obtained using powder-bed/-feed AM. The purpose of this study was to develop and investigate the feasibility of a fine wire-based laser metal deposition (FW-LMD) process for producing high-precision metal components with improved resolution, dimensional accuracy and surface finish. Design/methodology/approach The proposed FW-LMD AM process uses a fine stainless steel wire with a diameter of 100 µm as the additive material and a pulsed Nd:YAG laser as the heat source. The pulsed laser beam generates a melt pool on the substrate into which the fine wire is fed, and upon moving the X–Y stage, a single-pass weld bead is created during solidification that can be laterally and vertically stacked to create a 3D metal component. Process parameters including laser power, pulse duration and stage speed were optimized for the single-pass weld bead. The effect of lateral overlap was studied to ensure low surface roughness of the first layer onto which subsequent layers can be deposited. Multi-layer deposition was also performed and the resulting cross-sectional morphology, microhardness, phase formation, grain growth and tensile strength have been investigated. Findings An optimized lateral overlap of about 60-70% results in an average surface roughness of 8-16 µm along all printed directions of the X–Y stage. The single-layer thickness and dimensional accuracy of the proposed FW-LMD process was about 40-80 µm and ±30 µm, respectively. A dense cross-sectional morphology was observed for the multilayer stacking without any visible voids, pores or defects present between the layers. X-ray diffraction confirmed a majority austenite phase with small ferrite phase formation that occurs at the junction of the vertically stacked beads, as confirmed by the electron backscatter diffraction (EBSD) analysis. Tensile tests were performed and an ultimate tensile strength of about 700-750 MPa was observed for all samples. Furthermore, multilayer printing of different shapes with improved surface finish and thin-walled and inclined metal structures with a minimum achievable resolution of about 500 µm was presented. Originality/value To the best of the authors’ knowledge, this is the first study to report a directed energy deposition process using a fine metal wire with a diameter of 100 µm and can be a possible solution to improving surface finish and reducing the “stair-stepping” effect that is generally observed for wires with a larger diameter. The AM process proposed in this study can be an attractive alternative for 3D printing of high-precision metal components and can find application for rapid prototyping in a range of industries such as medical and automotive, among others.


2014 ◽  
Vol 627 ◽  
pp. 29-34 ◽  
Author(s):  
Vichaya Thammasing ◽  
Somkiat Tangjitsitcharoen

The purpose of this research is to develop the models to predict the average surface roughness and the surface roughness during the in-process grinding by monitoring the cutting force ratio. The proposed models are developed based on the experimentally obtained results by employing the exponential function with four factors, which are the spindle speed, the feed rate, the depth of cut, and the cutting force ratio. The experimentally obtained results showed that the dimensionless cutting force ratio is usable to predict the surface roughness during the grinding process, which can be calculated and obtained by taking the ratio of the corresponding time records of the cutting force Fy in the spindle speed direction to that of the cutting force Fz in the radial wheel direction. The multiple regression analysis is utilized to calculate the regression coefficients with the use of the least square method at 95% confident level. The experimentally obtained models have been verified by the new cutting tests. It is proved that the developed surface roughness models can be used to predict the in-process surface roughness with the high accuracy of 93.9% for the average surface roughness and 92.8% for the surface roughness.


2015 ◽  
Vol 2015 (DPC) ◽  
pp. 001928-001955
Author(s):  
Naoya Watanabe ◽  
Masahiro Aoyagi ◽  
Daisuke Katagawa ◽  
Tsubasa Bandoh ◽  
Takahiko Mitsui ◽  
...  

Three-dimensional integrated circuits (3D-ICs) using through silicon via (TSV) have been developed as an emerging technology that can lead to significant progress (1–4). Among various TSV processes, the via-middle process has potential for wide spread use because formation of small-sized TSVs is relatively easy in the via-middle process. However, TSV reveal process must be performed for electrical contact in the via-middle process. This TSV reveal process is important because it can influence the metal contamination and stacking yield of 3D-ICs. Conventionally, TSV reveal is performed by Si grinding and Si dry etching (5). A disadvantage of that method is the resultant TSV depth deviation, which can cause bonding failure during wafer/chip stacking. In (6), TSV leveling was performed by introducing a chemical mechanical polishing (CMP) step after deposition of the backside insulator. However, the revealed TSVs break during CMP step if they exceed a certain height. To overcome these problems, we developed a novel TSV reveal process comprising direct Si/Cu grinding and metal contamination removal (7,8). First, simultaneous grinding of Cu and Si was performed using a novel vitrified grinding wheel. In situ cleaning with a high-pressure micro jet and the inelastic porous structure of the grinding wheel suppressed the adhesion of Cu contaminants to the Si, and TSVs were leveled and exposed. Next, an electroless Ni-B film was deposited on the Cu surface of the TSVs. The Si was etched with an alkaline solution, whereas the Cu was protected by the Ni-B film. An insulator was deposited, and then the insulator on the top surface of the TSV was removed. We achieved the backside reveal of TSVs without TSV depth deviation and suppressed Cu contamination to less than 1e11 atoms/cm2. However, after direct Si/Cu grinding with an 8000 grit grinding wheel, the average surface roughness of Si was 5–10 nm, which is larger than that after chemical mechanical polishing (CMP). In this paper, we developed vitrified grinding wheels with very high grit numbers (#30,000 and #45,000) and present an improved version of our TSV reveal process. The average surface roughness of Si after Si/Cu grinding was approximately 3 nm for the 30,000 grit grinding wheel and 1 nm for the 45,000 grit grinding wheel. This value is equivalent to that after CMP. The improved process produced a uniform reveal of 4-um-diameter TSVs without TSV depth deviation and Cu contamination. The Cu contaminant concentration on Si region between TSVs was small (<3e10 atoms/cm2). This process will reduce the cost of the TSV reveal process and considerably improve the TSV yield.


2019 ◽  
Vol 89 (5) ◽  
pp. 742-750
Author(s):  
İrem Kurt ◽  
Zafer Cavit Çehreli ◽  
Ayça Arman Özçırpıcı ◽  
Çağla Şar

ABSTRACT Objectives: To determine the best bonding method of orthodontic attachment among monolithic zirconia, feldspathic porcelain, hybrid porcelain, and the impact of surface-conditioning methods using a three-dimensional optical profilometer after debonding. Materials and Methods: 56 feldspathic porcelain, 56 monolithic zirconia, and 56 hybrid porcelain samples were divided into four surface treatment subgroups: (1) hydrofluoric (HF) acid etch + silane, (2) Al2O3 sandblasting + silane, (3) silicoating (SiO2), and (4) diamond bur + silane. The specimens were tested to evaluate shear bond strength (SBS). Residual composite was removed after debonding. Three-dimensional white-light interferometry was used to obtain quantitative measurements on surface roughness. Results: The highest SBS value was found for the HF acid–etched feldspathic porcelain group. The average surface roughness values were significantly higher in all material groups in which diamond bur was applied, while roughening with Cojet provided average surface roughness values closer to the original material surface. Conclusions: Variations in structures of the materials and roughening techniques affected the SBS and surface roughness findings.


2019 ◽  
Vol 11 (7) ◽  
pp. 168781401983631 ◽  
Author(s):  
István Gábor Gyurika ◽  
Tibor Szalay

Automated stone manufacturing has undergone considerable development in recent years. Thanks to international research dealing with the cutting, sawing and grinding of different natural stones, processing time shortens and tool-life lengthens. However, the process of stone milling has not been extensively examined yet, primarily because of the novelty of this technology. The aim of the research described in this article is to examine how variable cutting speed affects the quality of workpiece edges while milling granite materials. For the research, sample surfaces were formed on five granite slabs with different average grain sizes using five cutting speed values. Afterwards, changes in the average surface roughness and average edge chipping rate were examined. From the research results, it can be concluded that, due to an increase in cutting speed, the average edge chipping rate will decrease until reaching a borderline speed. In the case of a higher cutting speed, the referent tendency cannot be ascertained. A statistical analysis conducted in the scope of this research showed that if a variable cutting speed is applied, then changes in the quality of the sample surface edge can be inferred from the development trends of average surface roughness.


Sign in / Sign up

Export Citation Format

Share Document