scholarly journals Factors Affecting Tolerance to Low Night Temperature Differ by Fruit Types and Sizes in Tomato

Author(s):  
Eun Young Yang ◽  
Sherzod Nigmatullaevich Rajaemtov ◽  
Myeong Cheoul Cho ◽  
Hyo Bong Jeong ◽  
Won Byoung Chae

Low night temperature (LNT) can be a practical and economical target in tomato breeding programs in terms of energy saving in greenhouses. This study was conducted to investigate the physiological responses to LNT using four tomato accessions of cherry and large fruit types with LNT tolerance and sensitivity grown in two greenhouses with night temperature set-points of 10 and 15°C for heating. LNT significantly reduced plant height regardless of fruit types and LNT tolerance. The number of flowers were significantly reduced in 10°C in cherry but not in large fruit types. Fruit set in 10°C was significantly lower in LNT sensitive accessions than tolerant ones regardless of fruit types, which was due to abnormal flower morphology in 10°C. Proline accumulation patterns between 10 and 15°C significantly differed between fruit types as well as between LNT tolerant and sensitive accessions. Chlorophyll content in 10 °C was significantly higher at later growth stages in LNT tolerant accessions than sensitive ones in both fruit types. No clear difference in photosynthetic parameters was observed between fruit types or tolerance and sensitive accessions except for photosynthetic rate, which was significantly lower in tolerant than sensitive accessions during early growing period. These results suggest that different tomato fruit types may have different mechanisms for LNT tolerance.

Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 681
Author(s):  
Eun-Young Yang ◽  
Sherzod Nigmatullayevich Rajametov ◽  
Myeong-Cheoul Cho ◽  
Hyo-Bong Jeong ◽  
Won-Byoung Chae

Tolerance to low night temperature (LNT) can be a practical and economical target in tomato breeding programs for energy saving in greenhouses. This study was conducted to investigate the physiological and biochemical responses to LNT using four tomato accessions with cherry or large fruit types having LNT tolerance or sensitivity. The accessions were grown in two polyethylene film greenhouses with night temperature set-points of 10 and 15 °C for heating. LNT significantly reduced the plant height, and photosynthetic parameters were also lower in 10 than 15 °C among all accessions. Photosynthetic rate in 10 °C during the early growth period was reduced more in LNT-tolerant than -sensitive accessions. The numbers of flowers in 10 °C were significantly reduced in cherry but not in large fruit types. Fruit set in 10 °C significantly decreased in LNT-sensitive accessions of both fruit types, which was due to abnormal flower morphology. Proline accumulation patterns between 10 and 15 °C significantly differed between cherry and large fruit types as well as between LNT-tolerant and -sensitive accessions. Chlorophyll content at later growth stages in 10 °C was significantly higher in LNT-tolerant than -sensitive accessions in both fruit types. These results suggest that different tomato fruit types may have different mechanisms for LNT tolerance, possibly due to different proline accumulation patterns between cherry and large fruit types.


2013 ◽  
Vol 48 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Milica Fotiric Aksic ◽  
Vera Rakonjac ◽  
Dragan Nikolic ◽  
Gordan Zec

The objective of this work was to evaluate variability in reproductive biology traits and the correlation between them in genotypes of 'Oblačinska' sour cherry (Prunus cerasus). High genetic diversity was found in the 41 evaluated genotypes, and significant differences were observed among them for all studied traits: flowering time, pollen germination, number of fruiting branches, production of flower and fruit, number of flowers per bud, fruit set, and limb yield efficiency. The number of fruiting branches significantly influenced the number of flower and fruit, fruit set, and yield efficiency. In addition to number of fruiting branches, yield efficiency was positively correlated with fruit set and production of flower and fruit. Results from principal component analysis suggested a reduction of the reproductive biology factors affecting yield to four main characters: number and structure of fruiting branches, flowering time, and pollen germination. Knowledge of the reproductive biology of the 'Oblačinska' genotypes can be used to select the appropriate ones to be grown or used as parents in breeding programs. In this sense, genotypes II/2, III/9, III/13, and III/14 have very good flower production and satisfactory pollen germination.


HortScience ◽  
1996 ◽  
Vol 31 (5) ◽  
pp. 759c-759
Author(s):  
Mary M. Peet ◽  
Suguru Sato

Global temperature increases are predicted over the next several decades. Earth surface temperatures in 1995 were the highest ever recorded. At day temperatures above 30C or night temperatures above 21C, tomato fruit production decreases. However, the temperature dependence of fruit production has not been described in terms of whether day temperatures, night temperatures, or mean temperatures are the most limiting. The process or tissue most sensitive to heat and most limiting to fruit production is also not known. The objectives of this experiment are to establish the temperature dependence of fruit set in tomatoes and to determine the importance of post-pollen production effects. We imposed a total of nine temperature treatments in a series of four separate experiments. Each experiment consisted of a 30/24C treatment and two other day/night temperature combinations with differing means and/or day/night temperature differentials. As mean daily temperature increased from 25 to 29C, fruit set, fruit number, total fruit weight, and seediness index (a quantitative rate of fruit seed content) declined. Temperature treatments did not affect average fruit weight. Higher mean temperatures promoted flowering except at the highest temperature. Mean temperature was more important than day/night temperature differentials or the specific daytime or nighttime temperature treatment.


Author(s):  
Sherzod Nigmatullaevich Rajametov ◽  
Eun Young Yang ◽  
Myeong Cheoul Cho ◽  
Hyo Bong Jeong ◽  
Kwanuk Lee

Tomato is exposure to diverse abiotic stresses. Cold stress is one of harsh environmental 12 stresses. Abnormal low temperature affects tomato growth and development including physiolog- 13 ical disorders, flower drops, and abnormal fruit morphology, causing the decrease of tomato yield 14 and a fruit quality. It is important to identify low temperature-(LT) tolerant tomato (Solanum lyco- 15 persicum L.) cultivars. This study focused on analyzing physiological traits of thirty-five tomato ac- 16 cessions with three fruit types (cherry, medium, and large sizes) under night temperature set-points 17 of 15°C for normal temperature (NT) and 10°C for LT, respectively. Plant heights (PH) of most to- 18 mato accessions in LT were remarkably decreased compared to those in NT. The growth of leaf 19 length (LL) and leaf width (LW) was reduced depending on the genotypes under LT. The number 20 of fruits (NFR), fruit set (FS), fruit yield (FY), and marketable yield (MY) was negatively affected in 21 LT. The FS in LT was significantly correlated with FY in LT in total populations (n = 35), cherry fruit 22 sub-populations (n = 20), and medium fruit sub-populations (n = 11). Moreover, the relevance of 23 NFL in LT with FY in LT was related to total populations (n = 35), cherry fruit sub-populations (n = 24 20), but not medium fruit sub-populations (n = 11). The results indicate the physiological traits of 25 FS in LT and FY in LT are crucial factors for selecting and determining LT-tolerant cultivars for 26 breeding programs in tomato plants depending on different fruit types.


2020 ◽  
Vol 16 ◽  
Author(s):  
Yu-Wei Cui ◽  
Liang-Yu Chen ◽  
Xin-Xin Liu

Abstract:: Thanks to their excellent corrosion resistance, superior mechanical properties and good biocompatibility, titanium (Ti) and Ti alloys are extensively applied in biomedical fields. Pitting corrosion is a critical consideration for the reliability of Ti and Ti alloys used in the human body. Therefore, this article focuses on the pitting corrosion of Ti and Ti alloys, which introduces the growth stages of pitting corrosion and its main influencing factors. Three stages, i.e. (1) breakdown of passive film, (1) metastable pitting, and (3) propagation of pitting, are roughly divided to introduce the pitting corrosion. As reviewed, corrosive environment, applied potential, temperature and alloy compositions are the main factors affecting the pitting corrosion of Ti and Ti alloys. Moreover, the pitting corrosion of different types Ti alloys are also reviewed to correlate the types of Ti alloys and the main factors of pitting corrosion. Roughly speaking, β-type Ti alloys have the best pitting corrosion resistance among the three types of Ti alloys.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wenliu Zhang ◽  
Jiangyun Gao

Abstract Background Most orchid species have been shown to be severely pollination limited, and the factors affecting reproductive success have been widely studied. However, the factors determining the reproductive success vary from species to species. Habenaria species typically produce nectar but exhibit variable fruit set and reproductive success among species. Here, we investigated the influence of the flowering plant density, inflorescence size, breeding system, and pollinator behaviour on the reproductive success of two rewarding Habenaria species. Results Our observations indicated that Habenaria limprichtii and H. petelotii co-occur in roadside verge habitats and present overlapping flowering periods. Both species were pollination limited, although H. limprichtii produced more fruits than H. petelotii under natural conditions during the 3-year investigation. H. petelotii individuals formed distinct patches along roadsides, while nearly all H. limprichtii individuals clustered together. The bigger floral display and higher nectar sugar concentration in H. limprichtii resulted in increased attraction and visits from pollinators. Three species of effective moths pollinated for H. limprichtii, while Thinopteryx delectans (Geometridae) was the exclusive pollinator of H. petelotii. The percentage of viable seeds was significantly lower for hand geitonogamy than for hand cross-pollination in both species. However, H. limprichtii may often be geitonogamously pollinated based on the behaviours of the pollinators and viable embryo assessment. Conclusions In anthropogenic interference habitats, the behaviours and abundance of pollinators influence the fruit set of the two studied species. The different pollinator assemblages in H. limprichtii can alleviate pollinator specificity and ensure reproductive success, whereas the more viable embryos of natural fruit seeds in H. petelotii suggested reducing geitonogamy by pollinators in the field. Our results indicate that a quantity-quality trade-off must occur between species with different breeding strategies so that they can fully exploit the existing given resources.


Inventions ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 42
Author(s):  
Worasit Sangjan ◽  
Arron H. Carter ◽  
Michael O. Pumphrey ◽  
Vadim Jitkov ◽  
Sindhuja Sankaran

Sensor applications for plant phenotyping can advance and strengthen crop breeding programs. One of the powerful sensing options is the automated sensor system, which can be customized and applied for plant science research. The system can provide high spatial and temporal resolution data to delineate crop interaction with weather changes in a diverse environment. Such a system can be integrated with the internet to enable the internet of things (IoT)-based sensor system development for real-time crop monitoring and management. In this study, the Raspberry Pi-based sensor (imaging) system was fabricated and integrated with a microclimate sensor to evaluate crop growth in a spring wheat breeding trial for automated phenotyping applications. Such an in-field sensor system will increase the reproducibility of measurements and improve the selection efficiency by investigating dynamic crop responses as well as identifying key growth stages (e.g., heading), assisting in the development of high-performing crop varieties. In the low-cost system developed here-in, a Raspberry Pi computer and multiple cameras (RGB and multispectral) were the main components. The system was programmed to automatically capture and manage the crop image data at user-defined time points throughout the season. The acquired images were suitable for extracting quantifiable plant traits, and the images were automatically processed through a Python script (an open-source programming language) to extract vegetation indices, representing crop growth and overall health. Ongoing efforts are conducted towards integrating the sensor system for real-time data monitoring via the internet that will allow plant breeders to monitor multiple trials for timely crop management and decision making.


1969 ◽  
Vol 11 (3) ◽  
pp. 587-591 ◽  
Author(s):  
T. N. Khan

Variability in the host-reaction of barley to infection by Drechslera teres was examined in the parents and progeny of selected crosses under different environmental conditions of testing.The Ethiopian variety C.I. 5791 exhibits a consistently high level of resistance under a range of environmental conditions, which is in contrast to the Manchurian variety C.I. 2330. The sensitivity of the genes for resistance possessed by these varieties to environmental modifications is considered to depend upon their respective genetic backgrounds. Furthermore, variability of host reaction in the progeny of these resistant varieties was shown to be influenced by the genetic background of the susceptible parent used.The implications of these findings in the conduct and interpretation of genetic studies and in backcross breeding programs is discussed.


HortScience ◽  
1996 ◽  
Vol 31 (3) ◽  
pp. 447-448 ◽  
Author(s):  
Erik J. Sacks ◽  
Dina A. St. Clair

The influence of cryogenic pollen storage on fruit set and seed production in tomato (Lycopersicon esculentum Mill.) was investigated. Flowers pollinated with pollen samples stored for 5 weeks at –80C, with or without 20 h precooling at 4C, had similar fruit set and number of viable seed per fruit as those pollinated with fresh pollen. Pollen samples, which were repeatedly cooled (–80C) and warmed (to 22 to 24C) for up to six cycles, continuously maintained the same viability as the fresh pollen. When cryogenically stored pollen of L. esculentum 2-837, LA359, LA3198, and LA3199 were used to pollinate LA359, the number of viable seed formed per fruit differed significantly. Results of this study suggest that pollen cryopreservation can be used successfully for tomato breeding and germplasm storage.


Sign in / Sign up

Export Citation Format

Share Document