scholarly journals The Potential Role of Cytokines and Growth Factors in the Pathogenesis of Alzheimer’s Disease

Author(s):  
Gilbert Ogunmokun ◽  
Saikat Dewanjee ◽  
Pratik Chakraborty ◽  
Chandrasekhar Valupadas ◽  
Anupama Chaudhary ◽  
...  

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized mainly by the gradual decay in neuronal function as a consequence of diverse degenerating events primarily including mitochondria dysfunction and cascades of neuro-immune reactions. Besides the acquired harmful reactive oxygen species (ROS), neurotoxins, and amyloid-beta (Aβ) and TAU pathologies in neurons, accumulating evidence with time underlined the roles of cytokines and growth factors in the AD pathogenesis. It may help us in evaluating the propensities and specific mechanism(s) of cytokines and factors impacting neuron upon apoptotic decline. Proinflammatory cytokines often induce inflammation in AD and AD-like pathogenesis in response to the apoptotic scenarios where some growth factors are involved in cytokinetic reactions to activate microglia and causing inflammation in AD. In this report, we comprehensively reviewed role of cytokines and chemokines in immune response to AD and neuropsychiatry. We provided insights into the neuroinflammation and the role of diverse factors including the pro-/anti-inflammatory cytokines, APP, TAU phosphorylation, glycation end products, complement system, and the role of glial cells. Also, we discussed the pathogenic and protective role of macrophage migration inhibitory factors, choroid plexus-, neurotrophic- and hematopoietic -related growth factors in AD. We further shed light on the availability and accessibility of the cytokines across the blood-brain barrier in AD pathophysiology. Taken together, the emerging role of these factors in AD pathology emphasized the importance of building novel strategies for an effective therapeutic/neuropsychiatric management of AD in clinics.

Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2790
Author(s):  
Gilbert Ogunmokun ◽  
Saikat Dewanjee ◽  
Pratik Chakraborty ◽  
Chandrasekhar Valupadas ◽  
Anupama Chaudhary ◽  
...  

Alzheimer’s disease (AD) is one of the most prominent neurodegenerative diseases, which impairs cognitive function in afflicted individuals. AD results in gradual decay of neuronal function as a consequence of diverse degenerating events. Several neuroimmune players (such as cytokines and growth factors that are key players in maintaining CNS homeostasis) turn aberrant during crosstalk between the innate and adaptive immunities. This aberrance underlies neuroinflammation and drives neuronal cells toward apoptotic decline. Neuroinflammation involves microglial activation and has been shown to exacerbate AD. This review attempted to elucidate the role of cytokines, growth factors, and associated mechanisms implicated in the course of AD, especially with neuroinflammation. We also evaluated the propensities and specific mechanism(s) of cytokines and growth factors impacting neuron upon apoptotic decline and further shed light on the availability and accessibility of cytokines across the blood-brain barrier and choroid plexus in AD pathophysiology. The pathogenic and the protective roles of macrophage migration and inhibitory factors, neurotrophic factors, hematopoietic-related growth factors, TAU phosphorylation, advanced glycation end products, complement system, and glial cells in AD and neuropsychiatric pathology were also discussed. Taken together, the emerging roles of these factors in AD pathology emphasize the importance of building novel strategies for an effective therapeutic/neuropsychiatric management of AD in clinics.


1996 ◽  
Vol 21 (4) ◽  
pp. 236-250 ◽  
Author(s):  
Jamie MacGregor ◽  
Wade S. Parkhouse

The role of the insulin-like growth factors I and II (IGF-I and IGF-II), previously known as the somatomedins, in general growth and development of various tissues has been known for many years. Thought of exclusively as endocrine factors produced by the liver, and under the control of growth hormone, the somatomedins were known as the intermediaries by which growth hormone exerted its cellular effects during tissue growth and maturation. Eventually it was discovered that virtually every tissue type is capable of autocrine production of the IGFs, and their involvement in skeletal muscle tissue repair and regeneration became apparent. Recent advances in technology have allowed the characterisation of many of the different growth factors believed to play a role in muscle regeneration, and experimental manipulations of cells in culture have provided insight into the effects of the various growth factors on the myoblast. This paper explores the potential role of the IGFs in skeletal muscle regeneration. A critical role of IGF-II in terminal differentiation of proliferating muscle precurser cells following injury is proposed. Key words: growth factors, myogenesis, skeletal muscle regeneration


2005 ◽  
Vol 32 ◽  
pp. 67-70 ◽  
Author(s):  
Nicolaus H. Andratschke ◽  
Carsten Nieder ◽  
Roger E. Price ◽  
Belinda Rivera ◽  
K. Kian Ang

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Wenzhou Huang ◽  
Peng Ao ◽  
Jian Li ◽  
Tianlong Wu ◽  
Libiao Xu ◽  
...  

Aging is one of the most prominent risk factors for the pathological progression of osteoarthritis (OA). One feature of age-related changes in OA is advanced glycation end products (AGEs) accumulation in articular cartilage. Autophagy plays a cellular housekeeping role by removing dysfunctional cellular organelles and proteins. However, the relationship between autophagy and AGE-associated OA is unknown. The aim of this study is to determine whether autophagy participates in the pathology of AGE-treated chondrocytes and to investigate the exact role of autophagy in AGE-induced cell apoptosis and expression of matrix metalloproteinase- (MMP-) 3 and MMP-13. AGEs induced notable apoptosis that was detected by Annexin V/PI double-staining, and the upregulation of MMP-3 and MMP-13 was confirmed by Western blotting. Autophagy-related proteins were also determined by Western blotting, and chondrocytes were transfected with mCherry-GFP-LC3B-adenovirus to monitor autophagic flux. As a result, autophagy significantly increased in chondrocytes and peaked at 6 h. Furthermore, rapamycin (RA) attenuated AGE-induced apoptosis and expression of MMP-3 and MMP-13 by autophagy activation. In contrast, pretreatment with autophagy inhibitor 3-methyladenine (3-MA) enhanced the abovementioned effects of AGEs. We therefore demonstrated that autophagy is linked with AGE-related pathology in rat chondrocytes and plays a protective role in AGE-induced apoptosis and expression of MMP-3 and MMP-13.


2013 ◽  
Vol 59 (1) ◽  
pp. 25-50 ◽  
Author(s):  
A.V. Alessenko

The review discusses the functional role of sphingolipids in the pathogenesis of Alzheimer's disease. Certain evidence exist that the imbalance of sphingolipids such as sphingomyelin, ceramide, sphingosine, sphingosine-1-phosphate and galactosylceramide in the brain of animals and humans, in the cerebrospinal fluid and blood plasma of patients with Alzheimer's disease play a crucial role in neuronal function by regulating growth, differentiation and cell death in CNS. Activation of sphingomyelinase, which leads to the accumulation of the proapoptotic agent, ceramide, can be considered as a new mechanism for AD and may be a prerequisite for the treatment of this disease by using drugs that inhibit sphingomyelinase activity. The role of sphingolipids as biomarkers for the diagnosis of the early stage of Alzheimer's disease and monitoring the effectiveness of treatment with new drugs is discussed.


2020 ◽  
Vol 134 (1) ◽  
pp. 3-13 ◽  
Author(s):  
Samah Ahmadieh ◽  
Ha Won Kim ◽  
Neal L. Weintraub

Abstract Perivascular adipose tissue (PVAT) directly juxtaposes the vascular adventitia and contains a distinct mixture of mature adipocytes, preadipocytes, stem cells, and inflammatory cells that communicate via adipocytokines and other signaling mediators with the nearby vessel wall to regulate vascular function. Cross-talk between perivascular adipocytes and the cells in the blood vessel wall is vital for normal vascular function and becomes perturbed in diseases such as atherosclerosis. Perivascular adipocytes surrounding coronary arteries may be primed to promote inflammation and angiogenesis, and PVAT phenotypic changes occurring in the setting of obesity, hyperlipidemia etc., are fundamentally important in determining a pathogenic versus protective role of PVAT in vascular disease. Recent discoveries have advanced our understanding of the role of perivascular adipocytes in modulating vascular function. However, their impact on cardiovascular disease (CVD), particularly in humans, is yet to be fully elucidated. This review will highlight the complex mechanisms whereby PVAT regulates atherosclerosis, with an emphasis on clinical implications of PVAT and emerging strategies for evaluation and treatment of CVD based on PVAT biology.


Sign in / Sign up

Export Citation Format

Share Document