scholarly journals Climate Change, Uncertainty and Policy

Author(s):  
Jeroen Hopster

While the foundations of climate science and ethics are well established, fine-grained climate predictions, as well as policy-decisions, are beset with uncertainties. This chapter maps climate uncertainties and classifies them as to their ground, extent and location. A typology of uncertainty is presented, centered along the axes of scientific and moral uncertainty. This typology is illustrated with paradigmatic examples of uncertainty in climate science, climate ethics and climate economics. Subsequently, the chapter discusses the IPCC’s preferred way of representing uncertainties and evaluates its strengths and weaknesses from a risk management perspective. Three general strategies for decision-makers to cope with climate uncertainty are outlined, the usefulness of which largely depends on whether or not decision-makers find themselves in a context of deep uncertainty. The chapter concludes by offering two recommendations to ease the work of policymakers, faced with the various uncertainties engrained in climate discourse.

2019 ◽  
Vol 2 (1) ◽  
pp. 95-100 ◽  
Author(s):  
Simon Sharpe

Abstract. Humanity's situation with respect to climate change is sometimes compared to that of a frog in a slowly boiling pot of water, meaning that change will happen too gradually for us to appreciate the likelihood of catastrophe and act before it is too late. I argue that the scientific community is not yet telling the boiling frog what he needs to know. I use a review of the figures included in two reports of the Intergovernmental Panel on Climate Change to show that much of the climate science communicated to policymakers is presented in the form of projections of what is most likely to occur, as a function of time (equivalent to the following statement: in 5 min time, the water you are sitting in will be 2 ∘C warmer). I argue from first principles that a more appropriate means of assessing and communicating the risks of climate change would be to produce assessments of the likelihood of crossing non-arbitrary thresholds of impact, as a function of time (equivalent to the following statement: the probability of you being boiled to death will be 1 % in 5 min time, rising to 100 % in 20 min time if you do not jump out of the pot). This would be consistent with approaches to risk assessment in fields such as insurance, engineering, and health and safety. Importantly, it would ensure that decision makers are informed of the biggest risks and hence of the strongest reasons to act. I suggest ways in which the science community could contribute to promoting this approach, taking into account its inherent need for cross-disciplinary research and for engagement with decision makers before the research is conducted instead of afterwards.


2021 ◽  
Author(s):  
◽  
Judith Helen Lawrence

<p>The ability of decision makers to respond to climate change impacts such as sea-level rise and increased flood frequency is challenged by uncertainty about scale, timing, dynamic changes that could lead to regime shifts, and by societal changes. Climate change adaptation decision making needs to be robust and flexible across a range of possible futures, to provide sufficient certainty for investment decisions in the present, without creating undue risks and liabilities for the near and long-term futures. A country’s governance and regulatory institutions set parameters for such decisions. The decision-making challenge is, therefore, a function of the uncertainty and dynamic characteristics of climate change, a country’s institutional framework, and the ways in which actual decision-making practice delivers on the intention of the framework.  My research asks if the current decision-making framework, at national and sub-national scales, and practices under it are adequate to enable decision makers to make climate change adaptation decisions that sufficiently address the constraints posed by climate change uncertainty and dynamic change. The focus is on New Zealand’s multi-scale governance and institutional framework with its high level of devolution to the local level, the level assumed as the most appropriate for climate change adaptation decisions. Empirical information was collected from a sample of agencies and actors, at multiple governance scales reflecting the range of geographical characteristics, governance types, organisational functions and actor disciplines. Data were collected using a mix of workshops, interviews and document analyses. The adequacy of the institutional framework and practice was examined using 12 criteria derived from the risk-based concepts of precaution, risk management, adaptive management and transformational change, with respect to; a) understanding and representing uncertainty and dynamic climate change; b) governance and regulations; and c) organisations and actors.  The research found that the current decision-making framework has many elements that could, in principle, address uncertainty and dynamic climate change. It enables long-term considerations and emphasises precaution and risk-based decision making. However, adaptive and transformational objectives are largely absent, coordination across multiple levels of government is constrained and timeframes are inconsistent across statutes. Practice shows that climate risk has been entrenched by misrepresentation of climate change characteristics. The resulting ambiguity is compounded at different governance scales, by gaps in the use of national and regional instruments and consequent differences in judicial decisions. Practitioners rely heavily upon static, time-bound treatments of risk, which reinforce unrealistic community expectations of ongoing protections, even as the climate continues to change, and makes it difficult to introduce transformational measures. Some efforts to reflect changing risk were observed but are, at best, transitional measures. Some experimentation was found in local government practice and boundary organisations were used as change-agents. Any potential improvements to both the institutional framework and to practices that could enable flexible and robust adaptation to climate change, would require supporting policies and adaptive governance to leverage them and to sustain decision making through time.  This thesis contributes to understanding how uncertainty and dynamic climate change characteristics matter for adaptation decision making by examining both a country-level institutional framework and practice under it. The adequacy analysis offers a new way of identifying institutional barriers, enablers and entry points for change in the context of decision making under conditions of uncertainty and dynamic climate change.</p>


2014 ◽  
Vol 52 (2) ◽  
pp. 559-562

Warwick McKibbin of the Australian National University and the Brookings Institution reviews “Climate Economics: The State of the Art”, by Frank Ackerman and Elizabeth A. Stanton. The Econlit abstract of this book begins: “Reviews the state of the art in climate economics and its background sciences. Discusses climate science for economists; damage functions and climate impacts; climate change impacts on natural systems; climate change impacts on human systems; climate economics before and after the Stern Review; uncertainty; public goods and public policy; economics and the climate policy debate; technologies for mitigation; the economics of mitigation; and adaptation. Ackerman and Stanton are Senior Economists at Synapse Energy Economics, Cambridge, Mass.”


2019 ◽  
Vol 100 (9) ◽  
pp. 1637-1642 ◽  
Author(s):  
Rowan T. Sutton

AbstractFor decision-makers, climate change is a problem in risk assessment and risk management. It is, therefore, surprising that the needs and lessons of risk assessment have not featured more centrally in the consideration of priorities for physical climate science research, or in the Working Group I contributions to the major assessment reports of the Intergovernmental Panel on Climate Change. This article considers the reasons, which include a widespread view that the job of physical climate science is to provide predictions and projections—with a focus on likelihood rather than risk—and that risk assessment is a job for others. This view, it is argued, is incorrect. There is an urgent need for physical climate science to take the needs of risk assessment much more seriously. The challenge of meeting this need has important implications for priorities in climate research, climate modeling, and climate assessments.


2019 ◽  
Vol 5 (2) ◽  
pp. 73-88
Author(s):  
Sudeep Rathee

Continuing with work of Rathee and Kapil (2013) on assessing the paradigm shift for investments due to climate change, this paper presents a review of the climate economics to add to the precious work on climate science. In its various sections the paper presents the economic treatment of climate problem as a market-failure from the perspectives of externalities and cost benefit analysis and reveals the dimensions of marginal abatement costs, and inter-generational equity. An assessment of likely total economic costs incurred due to climate change is presented to understand the scale of asset-value loss and economic risks faced by investors. We thereupon also investigate the various economic instruments that have been proposed by economists and implemented in policy for adaptation to and mitigation of climate change activity. In the penultimate section, a discussion is presented on challenges and opportunities for private investors in light of the climate economics revealed earlier in the paper. This research will add further to the work presented earlier in the series and adds another perspective of interdisciplinary dimension to the benefit of climate and economic researchers. For further action, the future researcher can build on this collective work to investigate for evidence on investable financial instruments that provide opportunities to allocate capital in the climate adaptation and mitigation related sectors.


2019 ◽  
Vol 19 (8) ◽  
pp. 2222-2230
Author(s):  
Daniel Marton ◽  
Kateřina Knoppová

Abstract Adaptation of water resources to climate change, drought management strategies, and hydrological and reservoir modelling have become serious issues in the context of climate change uncertainty. The aim of this paper is to introduce methods and tools for hydrological analysis and robust reservoir performance evaluation in this time of deep uncertainty. Newly developed lumped water balance and reservoir simulation models will be used to perform hydrological analysis, and a robust reservoir storage capacity reliability assessment will also be conducted. The hydrological data in relation to climate change will be constructed using two climatological datasets created by statistical downscaling tools LARS WG and ENSEMBLE Downscaling Portal. The hydrological analysis and the temporal reliability of the assessment of reservoir storage capacity and robustness in the context of climate change uncertainty will be presented as a case study of the Vir I reservoir and the Svratka River basin in the Czech Republic, in central Europe. The resulting models show a decrease in long-term mean flow, ranging from 6% to 32%, and in reservoir outflow from 1.5% to 26%, depending on the timescale, downscaling tools and emission scenarios.


2021 ◽  
Author(s):  
Kim M. Cobb

&lt;p&gt;Records of past climate trends, variability, and extremes hold key insights into Earth&amp;#8217;s changing climate, yet their full potential will remain untapped without a concerted effort to surmount several critical challenges, some time-sensitive. &amp;#160;In a century defined by accelerating climate change and human disturbance, the climate archive itself is at grave risk given that i) many paleoclimate records end in the late 20&lt;sup&gt;th&lt;/sup&gt; century, with no concerted effort to extend them to the present-day, and ii) many paleoclimate archives are disappearing under pressure from climate change and/or human disturbance. Second, many paleoclimate records are comprised of oxygen isotopes, yet the coordinated, multi-scale observational and modeling infrastructures required to unravel the mechanisms governing water isotope variability are as yet underdeveloped. This dramatic oversight exists despite development of technologies that avoid costly analysis via mass spectrometers, and despite the fact that water isotopes may very well be one of the most powerful diagnostic tracers of a changing global water cycle. Lastly, in part owing to the aforementioned deficiencies, paleoclimate data assimilation efforts remain fraught with large uncertainties, despite their promise in constraining many of the most uncertain aspects of future climate impacts, including the evolution of extreme events and hydrological trends and variability. Climate science for the 21&lt;sup&gt;st&lt;/sup&gt; century requires deep investments in the full integration of paleoclimate data and approaches into frameworks for climate risk and hazard assessments. In this sense, it is not surprising that paleoclimate scientists have played a key role in the communication of climate change science to decision-makers and the general public alike. Their understanding of the Earth system also equips them to contribute valuable insights to teams comprised of researchers, practitioners, and&amp;#160; decision-makers charged with leveraging science to inform solutions, in service to society. It&amp;#8217;s time to recognize that all climate scientists study climate of the past, and all paleoclimate scientists have insights that are relevant to our climate future.&lt;/p&gt;


2021 ◽  
Author(s):  
◽  
Judith Helen Lawrence

<p>The ability of decision makers to respond to climate change impacts such as sea-level rise and increased flood frequency is challenged by uncertainty about scale, timing, dynamic changes that could lead to regime shifts, and by societal changes. Climate change adaptation decision making needs to be robust and flexible across a range of possible futures, to provide sufficient certainty for investment decisions in the present, without creating undue risks and liabilities for the near and long-term futures. A country’s governance and regulatory institutions set parameters for such decisions. The decision-making challenge is, therefore, a function of the uncertainty and dynamic characteristics of climate change, a country’s institutional framework, and the ways in which actual decision-making practice delivers on the intention of the framework.  My research asks if the current decision-making framework, at national and sub-national scales, and practices under it are adequate to enable decision makers to make climate change adaptation decisions that sufficiently address the constraints posed by climate change uncertainty and dynamic change. The focus is on New Zealand’s multi-scale governance and institutional framework with its high level of devolution to the local level, the level assumed as the most appropriate for climate change adaptation decisions. Empirical information was collected from a sample of agencies and actors, at multiple governance scales reflecting the range of geographical characteristics, governance types, organisational functions and actor disciplines. Data were collected using a mix of workshops, interviews and document analyses. The adequacy of the institutional framework and practice was examined using 12 criteria derived from the risk-based concepts of precaution, risk management, adaptive management and transformational change, with respect to; a) understanding and representing uncertainty and dynamic climate change; b) governance and regulations; and c) organisations and actors.  The research found that the current decision-making framework has many elements that could, in principle, address uncertainty and dynamic climate change. It enables long-term considerations and emphasises precaution and risk-based decision making. However, adaptive and transformational objectives are largely absent, coordination across multiple levels of government is constrained and timeframes are inconsistent across statutes. Practice shows that climate risk has been entrenched by misrepresentation of climate change characteristics. The resulting ambiguity is compounded at different governance scales, by gaps in the use of national and regional instruments and consequent differences in judicial decisions. Practitioners rely heavily upon static, time-bound treatments of risk, which reinforce unrealistic community expectations of ongoing protections, even as the climate continues to change, and makes it difficult to introduce transformational measures. Some efforts to reflect changing risk were observed but are, at best, transitional measures. Some experimentation was found in local government practice and boundary organisations were used as change-agents. Any potential improvements to both the institutional framework and to practices that could enable flexible and robust adaptation to climate change, would require supporting policies and adaptive governance to leverage them and to sustain decision making through time.  This thesis contributes to understanding how uncertainty and dynamic climate change characteristics matter for adaptation decision making by examining both a country-level institutional framework and practice under it. The adequacy analysis offers a new way of identifying institutional barriers, enablers and entry points for change in the context of decision making under conditions of uncertainty and dynamic climate change.</p>


Author(s):  
Eric Chu ◽  
Todd Schenk

Cities are important venues for climate change communication, where global rhetoric, national directives, local priorities, and media discourses interact to advance mitigation, adaptation, and resilience outcomes on the ground. Urban decision makers are often directly accountable to their electorates, responsible for the tasks most relevant to advancing concrete action on climate change, and flexible in pursuing various public engagement programs. However, many cities are designing climate policies without robust downscaled climate projections or clear capacity and support mechanisms. They are often constrained by fragmented governance arrangements, limited resources, and jurisdictional boundaries. Furthermore, policies often fall short in responding to the disparate needs of heterogeneous urban populations. Despite these constraints, cities across the global North and South are innovating with various communication tools to facilitate public awareness, political engagement, context-specific understanding, and action around climate change. These tools range from traditional popular media to innovative participatory processes that acknowledge the interests of different stakeholders, facilitate engagement across institutional boundaries, and address persistent scientific uncertainty through information coproduction and knowledge reflexivity. By selectively employing these tools, local governments and their partners are able to translate climate science into actionable mitigation, adaptation, and resilience plans; prioritize decision making while taking into account the multiscaled nature of urban infrastructures and service provisions; and design adaptable and flexible communication processes that are socially equitable and inclusive over the long term.


2019 ◽  
Author(s):  
Simon Sharpe

Abstract. Humanity's situation with respect to climate change is sometimes compared to that of a frog in a slowly-boiling pot of water, meaning that change will happen too gradually for us to appreciate the likelihood of catastrophe and act before it is too late. I argue that the scientific community is not yet telling the boiling frog what he needs to know. I use a review of the figures included in two reports of the Inter-governmental Panel on Climate Change to show that much of the climate science communicated to policymakers is presented in the form of projections of what is most likely to occur, as a function of time (equivalent to: in 5 minutes' time, the water you are sitting in will be two degrees warmer). I argue from first principles that a more appropriate means of assessing and communicating the risks of climate change would be to produce assessments of the likelihood of crossing non-arbitrary thresholds of impact, as a function of time (equivalent to: the probability of you being boiled to death will be 1% in five minutes' time, rising to 100% in twenty minutes' time if you don't jump out of the pot). This would be consistent with approaches to risk assessment in fields such as insurance, engineering, and health and safety. Importantly, it would ensure decision-makers were informed of the biggest risks, and hence of the strongest reasons to act. I suggest ways in which the science community could contribute to promoting this approach, taking into account its inherent need for cross-disciplinary research and for engagement with decision-makers before the research is conducted, instead of afterwards.


Sign in / Sign up

Export Citation Format

Share Document