scholarly journals Exogenous Application of Methyl Jasmonate Increases Emissions of Volatile Organic Compounds in Pyrenean Oak Trees, Quercus pyrenaica

Author(s):  
Luisa Amo ◽  
Anna Mrazova ◽  
Irene Saavedra ◽  
Katerina Sam

The tri-trophic interactions between plants, insects, and insect predators and parasitoids are often mediated by chemical cues. The attraction to Herbivore-Infested Plant Volatiles (HIPVs) has been well documented for arthropod predators and parasitoids, and more recently for insectivorous birds. The attraction to plant volatiles induced by the exogenous application of methyl jasmonate (MeJA), a phytohormone typically produced in response to an attack of chewing herbivores, have provided controversial results, both in arthropod and avian predators. In this study, we aimed to examine whether potential differences in the composition of bouquets of volatiles produced by Herbivore-infested and MeJA-treated Pyrenean oak trees (Quercus pyrenaica) were related to differential avian attraction, as results from a previous study suggested. Results showed that the overall emission of volatiles produced by MeJA-treated and Herbivore-infested trees did not differ, and were higher than emissions of Control trees, although MeJA treatment showed more significant reaction and released several specific compounds in contrast to Herbivore-induced trees. These slight differences in the volatile composition may explain why avian predators were not so attracted to MeJA-treated trees as observed in a previous study in this plant-herbivore system. Unfortunately, the lack of avian visits to the experimental trees in the current study does not allow us to confirm this result and points out the need to perform more robust predator studies.

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 84
Author(s):  
Luisa Amo ◽  
Anna Mrazova ◽  
Irene Saavedra ◽  
Katerina Sam

The tri-trophic interactions between plants, insects, and insect predators and parasitoids are often mediated by chemical cues. The attraction to herbivore-induced Plant Volatiles (HIPVs) has been well documented for arthropod predators and parasitoids, and more recently for insectivorous birds. The attraction to plant volatiles induced by the exogenous application of methyl jasmonate (MeJA), a phytohormone typically produced in response to an attack of chewing herbivores, has provided controversial results both in arthropod and avian predators. In this study, we examined whether potential differences in the composition of bouquets of volatiles produced by herbivore-induced and MeJA-treated Pyrenean oak trees (Quercus pyrenaica) were related to differential avian attraction, as results from a previous study suggested. Results showed that the overall emission of volatiles produced by MeJA-treated and herbivore-induced trees did not differ, and were higher than emissions of Control trees, although MeJA treatment showed a more significant reaction and released several specific compounds in contrast to herbivore-induced trees. These slight yet significant differences in the volatile composition may explain why avian predators were not so attracted to MeJA-treated trees, as observed in a previous study in this plant-herbivore system. Unfortunately, the lack of avian visits to the experimental trees in the current study did not allow us to confirm this result and points out the need to perform more robust predator studies.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 533 ◽  
Author(s):  
Jiao-jiao Ji ◽  
Qi Feng ◽  
Hai-feng Sun ◽  
Xue-jun Zhang ◽  
Xiao-xiao Li ◽  
...  

Bioactive metabolites in Codonopsis pilosula are of particular interest as an immunostimulant. Methyl jasmonate (MeJA) plays an important role in the elicitation of metabolite biosynthesis. Here, we explored the response of metabolites to MeJA elicitation in C. pilosula adventitious roots and multiple shoots. The results showed that the biomass, polysaccharide, and lobetyolin content of adventitious roots exhibited the highest increases with 100 µmol·L−1 MeJA at the 16th day of subculture, whereas the atractylenolide III (a terpenoid) content increased extremely with 50 µmol·L−1 MeJA treatment at the 7th day of subculture. In addition, the biomass and lobetyolin content significantly increased at the 4th day after treatment. Similarly, the polysaccharide and lobetyolin content increased in multiple shoots. Further identification of different metabolites responding to MeJA by 1H-NMR showed an extremely significant increase of the lobetyolinin level, which coincided with lobetyolin. Accordingly, the precursor, fatty acids, showed a highly significant decrease in their levels. Furthermore, a significant increase in β-d-fructose-butanol glycoside was detected, which was accompanied by a decrease in the sucrose level. Accordingly, the enzyme genes responsible for terpenoid and carbohydrate biosynthesis, CpUGPase, and CpPMK, were up regulated. In conclusion, MeJA promoted culture growth and accelerated bioactive metabolite accumulation by regulating the expression of the metabolite biosynthesis related genes, CpUGPase and CpPMK in C. pilosula.


2019 ◽  
Vol 46 (1) ◽  
pp. 69 ◽  
Author(s):  
Nibedita Chakraborty ◽  
Jolly Basak

Vigna mungo (L.)Hepper is an economically important leguminous crop in south-east Asia. However, its production is severely affected by Mungbean yellow mosaic India virus (MYMIV). It is well established that methyl jasmonate (MeJA) is effective in inducing resistance against pathogens in several plants. To assess the role of MeJA in developing MYMIV tolerance in V. mungo, we analysed time-dependent biochemical and molecular responses of MYMIV susceptible V. mungo after exogenous application of different MeJA concentrations, followed by MYMIV infection. Our analysis revealed that exogenous application of different concentrations of MeJA resulted in decreased levels of malondialdehyde with higher membrane stability index values in MYMIV susceptible V. mungo, suggesting the protective role of MeJA through restoring the membrane stability. Moreover, the level of expression of different antioxidative enzymes revealed that exogenous MeJA is also very effective in ROS homeostasis maintenance. Enhanced expressions of the defence marker genes lipoxygenase and phenylalanine ammonia-lyase and the reduced expression of the MYMIV coat-protein encoding gene in all MeJA treated plants post MYMIV infection revealed that exogenous application of MeJA is effective for MYMIV tolerance in V. mungo. Our findings provide new insights into the physiological and molecular mechanisms of MYMIV tolerance in Vigna induced by MeJA.


Behaviour ◽  
2018 ◽  
Vol 155 (13-15) ◽  
pp. 945-967 ◽  
Author(s):  
Irene Saavedra ◽  
Luisa Amo

Abstract Plants emit herbivore-induced plant volatiles (HIPVs) when they are attacked by herbivorous arthropods to attract natural enemies of the herbivores. Previous studies have suggested that insectivorous birds can detect the HIPVs for prey location. The production of HIPVs is partly mediated by the jasmonic acid signalling pathway. Methyl jasmonate is one compound involved in the jasmonic acid signalling pathway. Therefore, spraying of methyl jasmonate (MeJa) solution on plants can induce the emission of volatiles similar to the HIPVs induced by herbivory. We performed two field experiments to test whether insectivorous adult birds are attracted to Pyrenean oak trees (Quercus pyrenaica) treated with MeJa solutions. We used artificial larvae to measure bird predation rate. There were no differences in the predation rates of plasticine larvae between control and MeJa treatments, suggesting that insectivorous birds were not attracted to trees treated with MeJa. We also tested whether blue tit nestlings without previous experience in foraging respond to the scent of Pyrenean oak tree leaves treated with MeJa, to test whether the attraction to MeJa-treated trees is innate. A similar number of nestlings performed begging responses when exposed to the scent of leaves of MeJa-treated trees compared to the scent of leaves of control untreated trees. Furthermore, the duration of the first begging was similar in response to the volatiles emitted by MeJa-treated trees and untreated trees. Despite previous evidence suggesting that insectivorous birds are attracted to HIPVs, our results show that neither insectivorous adult birds nor inexperienced nestlings were attracted to trees treated with MeJa. Further studies are needed to disentangle whether the differences in the emission of volatiles between herbivore-infested trees and MeJa-treated trees can explain this lack of attraction to MeJa-treated Pyrenean oak trees.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3537 ◽  
Author(s):  
Yuge Guan ◽  
Wenzhong Hu ◽  
Aili Jiang ◽  
Yongping Xu ◽  
Rengaowa Sa ◽  
...  

In order to find an efficient way for broccoli to increase the phenolic content, this study intended primarily to elucidate the effect of methyl jasmonate (MeJA) treatment on the phenolic accumulation in broccoli. The optimum concentration of MeJA was studied first, and 10 μM MeJA was chosen as the most effective concentration to improve the phenolic content in wounded broccoli. Furthermore, in order to elucidate the effect of methyl jasmonate (MeJA) treatment on phenolic biosynthesis in broccoli, the key enzyme activities of phenylpropanoid metabolism, the total phenolic content (TPC), individual phenolic compounds (PC), antioxidant activity (AOX) and antioxidant metabolism-associated enzyme activities were investigated. Results show that MeJA treatment stimulated phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumarin coenzyme A ligase (4CL) enzymes activities in phenylpropanoid metabolism, and inhibited the activity of polyphenol oxidase (PPO), and further accelerated the accumulation of the wound-induced rutin, caffeic acid, and cinnamic acid accumulation, which contributed to the result of the total phenolic content increasing by 34.8% and ferric reducing antioxidant power increasing by 154.9% in broccoli. These results demonstrate that MeJA in combination with wounding stress can induce phenylpropanoid metabolism for the wound-induced phenolic accumulation in broccoli.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 447 ◽  
Author(s):  
Felipe Valenzuela-Riffo ◽  
Paz E. Zúñiga ◽  
Luis Morales-Quintana ◽  
Mauricio Lolas ◽  
Marcela Cáceres ◽  
...  

Several attempts have been made to study the effects of methyl jasmonate (MeJA) on plants in the past years. However, the comparative effects of the number and phenological time of MeJA applications on the activation of defense systems is currently unknown in strawberries. In the present research, we performed three field treatments during strawberry (Fragaria × ananassa ‘Camarosa’) fruit development and ripening which consisted of differential MeJA applications at flowering (M3), and the large green (M2 and M3) and red ripe (M1, M2, and M3) fruit stages. We also checked changes in gene expression related to plant defense against Botrytis cinerea inoculation post-harvest. In M3 treatment, we observed an upregulation of the anthocyanin and lignin contents and the defense-related genes, encoding for chitinases, β-1,3-glucanases and polygalacturonase-inhibiting proteins, after harvest (0 hpi), along with the jasmonate signaling-related genes FaMYC2 and FaJAZ1 at 48 h after B. cinerea inoculation (48 hpi) during postharvest storage. Although we did not find differences in gray mold incidence between the MeJA treatments and control, these results suggest that preharvest MeJA treatment from the flowering stage onwards (M3) primes defense responses mediated by the upregulation of different defense-related genes and retains the upregulation of MYC2 and JAZ1 at 48 hpi.


2008 ◽  
Vol 38 (4) ◽  
pp. 677-684 ◽  
Author(s):  
Nick Gould ◽  
Tony Reglinski ◽  
Mike Spiers ◽  
Joe T. Taylor

Methyl jasmonate (MeJA) can induce defence responses in plants to pathogen attack, but it can also have consequences for plant growth. The transient effects of exogenous MeJA treatment on the resistance of Monterey pine ( Pinus radiata D. Don) seedlings to Diplodia pinea (Desm.) Kickx. and some physiological parameters affecting the impact of treatment on seedling growth were investigated. Following foliar application of 4.5 mmol·L–1 MeJA, disease resistance was greatest 1–2 weeks after treatment and declined with time thereafter. Elevated disease resistance was accompanied by a reduction in seedling growth rate the second week following MeJA treatment. Thereafter, seedling growth rate recovered and exceeded that of the control seedlings 4–5 weeks after MeJA treatment. Within hours of MeJA treatment, reductions in both the capacity of photosystem II and transpiration rate were observed, resulting in a concomitant reduction in net CO2 uptake rate. The slight reduction in transpiration rate was also associated with an increase in needle water potential. Longer term measurements showed no effect of MeJA on photosynthetic rate, transpiration rate, chlorophyll content, or shoot water potential and thus could not account for the elevated growth rate observed 4–5 weeks after treatment.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Anacharis B. Sá-Nakanishi ◽  
Jamil Soni-Neto ◽  
Lucas S. Moreira ◽  
Geferson A. Gonçalves ◽  
Francielli M. S. Silva ◽  
...  

Methyl jasmonate (MeJA) is a fatty acid-derived cyclopentanone which shares structural similarities with prostaglandins and has been under study as a promising anti-inflammatory agent. This study investigated the actions of MeJA on systemic inflammation and oxidative status in rats with adjuvant-induced arthritis, a model for rheumatoid arthritis. MeJA (75 to 300 mg·kg−1) was administrated orally during 18 days after arthritis induction with Freund’s adjuvant. Articular and systemic inflammation was greatly increased in arthritic rats, likewise the oxidative stress in plasma and liver. The hepatic glucokinase activity and glycolysis were increased in arthritic rats. MeJA decreased most inflammatory parameters and abolished the increased protein carbonylation in plasma and liver, diminished the increased hepatic ROS content, and restored the hepatic GSH/GSSG ratio in arthritic rats. However, the MeJA treatment decreased the hepatic glucokinase activity and glycolysis and stimulated mitochondrial ROS production in healthy and arthritic rats. Oxygen uptake was increased by MeJA only in livers from treated arthritic rats. This action may bear relation to the increased activity of mitochondrial NADP+-dependent enzymes to provide reducing equivalents for the glutathione cycle. These beneficial effects, however, are associated with a decreased glucose flux through the glycolysis in the liver of arthritic and healthy rats.


Sign in / Sign up

Export Citation Format

Share Document