scholarly journals Stability Analysis of Divorce Dynamics Models

2020 ◽  
Vol 17 (2) ◽  
pp. 267-279
Author(s):  
Syamsir Muaraf ◽  
Syamsuddin Toaha ◽  
Kasbawati Kasbawati

This article examines the mathematical model of divorce. This model consists of four population classes, namely the Married class (M), the population class who experiences separation of separated beds (S), the population class who is divorced by Divorce (D), and the population class who experiences depression or stress due to divorce Hardship (H). This study focuses on the stability analysis of divorce-free and endemic equilibrium points. Local stability was analyzed using linearization and eigenvalues ​​methods. In addition, the basic reproduction number  is provided via the next generation matrix method. The existence and stability of the equilibrium point are determined from . The results showed that the rate of interaction between population M and populations other than H is very influential on efforts to minimize divorce. Divorce can be minimized when the transmission rate is reduced to . Reducing the transmission rate and increasing the rate of transfer from split bed class to married class can turn divorce endemic cases into non-endemic cases. A numerical simulation is given to confirm the analysis results.

Author(s):  
SANTOSHI PANIGRAHI ◽  
Sunita Chand ◽  
S Balamuralitharan

We investigate the fractional order love dynamic model with time delay for synergic couples in this manuscript. The quantitative analysis of the model has been done where the asymptotic stability of the equilibrium points of the model have been analyzed. Under the impact of time delay, the Hopf bifurcation analysis of the model has been done. The stability analysis of the model has been studied with the reproduction number less than or greater than 1. By using Laplace transformation, the analysis of the model has been done. The analysis shows that the fractional order model with a time delay can sufficiently improve the components and invigorate the outcomes for either stable or unstable criteria. In this model, all unstable cases are converted to stable cases under neighbourhood points. For all parameters, the reproduction ranges have been described. Finally, to illustrate our derived results numerical simulations have been carried out by using MATLAB. Under the theoretical outcomes from parameter estimation, the love dynamical system is verified.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10019
Author(s):  
OPhir Nave ◽  
Israel Hartuv ◽  
Uziel Shemesh

In general, a mathematical model that contains many linear/nonlinear differential equations, describing a phenomenon, does not have an explicit hierarchy of system variables. That is, the identification of the fast variables and the slow variables of the system is not explicitly clear. The decomposition of a system into fast and slow subsystems is usually based on intuitive ideas and knowledge of the mathematical model being investigated. In this study, we apply the singular perturbed vector field (SPVF) method to the COVID-19 mathematical model of to expose the hierarchy of the model. This decomposition enables us to rewrite the model in new coordinates in the form of fast and slow subsystems and, hence, to investigate only the fast subsystem with different asymptotic methods. In addition, this decomposition enables us to investigate the stability analysis of the model, which is important in case of COVID-19. We found the stable equilibrium points of the mathematical model and compared the results of the model with those reported by the Chinese authorities and found a fit of approximately 96 percent.


Author(s):  
Getachew Beyecha Batu ◽  
Eshetu Dadi Gurmu

In this paper, we have developed a deterministic mathematical model that discribe the transmission dynamics of novel corona virus with prevention control. The disease free and endemic equilibrium point of the model were calculated and its stability analysis were prformed. The reproduction number R0 of the model which determine the persistence of the disease or not was calculated by using next generation matrix and also used to determine the stability of the disease free and endemic equilibrium points which exists conditionally. Furthermore, sensitivity analysis of the model was performed on the parameters in the equation of reproduction to determine their relative significance on the transmission dynamics of COVID- 19 pandemic disease. Finally the simulations were carried out using MATLAB R2015b with ode45 solver. The simulation results illustrated that applying prevention control can successfully reduces the transmission dynamic of COVID-19 infectious disease.


2020 ◽  
Vol 8 (2) ◽  
pp. 61-68
Author(s):  
Victor Akinsola ◽  
ADEYEMI BINUYO

In this paper, a mathematical model of the transmission dynamics of corruption among populace is analyzed. The corruption free equilibrium state, characteristic equation and Eigen values of the corruption model were obtained. The basic reproductive number of the corruption model was also determined using the next generation operator technique at the corruption free equilibrium points. The condition for the stability of the corruption free equilibrium state was determined. The local stability analysis of the mathematical model of corruption was done and the results were presented and discussed accordingly. Recommendations were made from the results on measures to reduce the rate of corrupt practices among the populace.   


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Md Abdul Kuddus ◽  
M. Mohiuddin ◽  
Azizur Rahman

AbstractAlthough the availability of the measles vaccine, it is still epidemic in many countries globally, including Bangladesh. Eradication of measles needs to keep the basic reproduction number less than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{R}}_{0}<1)$$ ( i . e . R 0 < 1 ) . This paper investigates a modified (SVEIR) measles compartmental model with double dose vaccination in Bangladesh to simulate the measles prevalence. We perform a dynamical analysis of the resulting system and find that the model contains two equilibrium points: a disease-free equilibrium and an endemic equilibrium. The disease will be died out if the basic reproduction number is less than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{ R}}_{0}<1)$$ ( i . e . R 0 < 1 ) , and if greater than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{R}}_{0}>1)$$ ( i . e . R 0 > 1 ) epidemic occurs. While using the Routh-Hurwitz criteria, the equilibria are found to be locally asymptotically stable under the former condition on $${\mathrm{R}}_{0}$$ R 0 . The partial rank correlation coefficients (PRCCs), a global sensitivity analysis method is used to compute $${\mathrm{R}}_{0}$$ R 0 and measles prevalence $$\left({\mathrm{I}}^{*}\right)$$ I ∗ with respect to the estimated and fitted model parameters. We found that the transmission rate $$(\upbeta )$$ ( β ) had the most significant influence on measles prevalence. Numerical simulations were carried out to commissions our analytical outcomes. These findings show that how progression rate, transmission rate and double dose vaccination rate affect the dynamics of measles prevalence. The information that we generate from this study may help government and public health professionals in making strategies to deal with the omissions of a measles outbreak and thus control and prevent an epidemic in Bangladesh.


2013 ◽  
Vol 572 ◽  
pp. 636-639
Author(s):  
Xi Chen ◽  
Gang Wang

This paper deals with the walking stability analysis of a multi-legged crablike robot over slope using normalized energy stability margin (NESM) method in order to develop a common stabilization description method and achieve robust locomotion for the robot over rough terrains. The robot is simplified with its static stability being described by NESM. The mathematical model of static stability margin is built so as to carry out the simulation of walking stability over slope for the crablike robot that walks in double tetrapod gait. As a consequence, the relationship between stability margin and the height of the robots centroid, as well as its inclination relative to the ground is calculated by the stability criterion. The success and performance of the stability criterion proposed is verified through MATLAB simulation and real-world experiments using multi-legged crablike robot.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Hailay Weldegiorgis Berhe ◽  
Oluwole Daniel Makinde ◽  
David Mwangi Theuri

In this paper, dysentery diarrhea deterministic compartmental model is proposed. The local and global stability of the disease-free equilibrium is obtained using the stability theory of differential equations. Numerical simulation of the system shows that the backward bifurcation of the endemic equilibrium exists for R0>1. The system is formulated as a standard nonlinear least squares problem to estimate the parameters. The estimated reproduction number, based on the dysentery diarrhea disease data for Ethiopia in 2017, is R0=1.1208. This suggests that elimination of the dysentery disease from Ethiopia is not practical. A graphical method is used to validate the model. Sensitivity analysis is carried out to determine the importance of model parameters in the disease dynamics. It is found out that the reproduction number is the most sensitive to the effective transmission rate of dysentery diarrhea (βh). It is also demonstrated that control of the effective transmission rate is essential to stop the spreading of the disease.


Author(s):  
Huda Abdul Satar ◽  
Raid Kamel Naji

In this paper a prey-predator-scavenger food web model is proposed and studied. It is assumed that the model considered the effect of harvesting and all the species are infected by some toxicants released by some other species. The stability analysis of all possible equilibrium points is discussed. The persistence conditions of the system are established. The occurrence of local bifurcation around the equilibrium points is investigated. Numerical simulation is used and the obtained solution curves are drawn to illustrate the results of the model. Finally, the nonexistence of periodic dynamics is discussed analytically as well as numerically.


2004 ◽  
Vol 12 (04) ◽  
pp. 399-417 ◽  
Author(s):  
M. KGOSIMORE ◽  
E. M. LUNGU

This study investigates the effects of vaccination and treatment on the spread of HIV/AIDS. The objectives are (i) to derive conditions for the success of vaccination and treatment programs and (ii) to derive threshold conditions for the existence and stability of equilibria in terms of the effective reproduction number R. It is found, firstly, that the success of a vaccination and treatment program is achieved when R0t<R0, R0t<R0v and γeRVT(σ)<RUT(α), where R0t and R0v are respectively the reproduction numbers for populations consisting entirely of treated and vaccinated individuals, R0 is the basic reproduction number in the absence of any intervention, RUT(α) and RVT(σ) are respectively the reproduction numbers in the presence of a treatment (α) and a combination of vaccination and treatment (σ) strategies. Secondly, that if R<1, there exists a unique disease free equilibrium point which is locally asymptotically stable, while if R>1 there exists a unique locally asymptotically stable endemic equilibrium point, and that the two equilibrium points coalesce at R=1. Lastly, it is concluded heuristically that the stable disease free equilibrium point exists when the conditions R0t<R0, R0t<R0v and γeRVT(σ)<RUT(α) are satisfied.


2016 ◽  
Vol 26 (13) ◽  
pp. 1650217 ◽  
Author(s):  
Fangfang Jiang ◽  
Zhicheng Ji ◽  
Qing-Guo Wang ◽  
Jitao Sun

In this paper, we consider a class of flux controlled memristive circuits with a piecewise linear memristor (i.e. the characteristic curve of the memristor is given by a piecewise linear function). The mathematical model is described by a discontinuous planar piecewise smooth differential system, which is defined on three zones separated by two parallel straight lines [Formula: see text] (called as discontinuity lines in discontinuous differential systems). We first investigate the stability of equilibrium points and the existence and uniqueness of a crossing limit cycle for the memristor-based circuit under self-excited oscillation. We then analyze the existence of periodic orbits of forced nonlinear oscillation for the memristive circuit with an external exciting source. Finally, we give numerical simulations to show good matches between our theoretical and simulation results.


Sign in / Sign up

Export Citation Format

Share Document