scholarly journals The Stratification of Organic Carbon and Nitrogen in Top Soils as Affected by the Management of Organic and Conventional Rice Cultivation

2020 ◽  
Vol 35 (1) ◽  
pp. 126
Author(s):  
Arif Anshori ◽  
Ali Pramono ◽  
Mujiyo Mujiyo

Organic and conventional management in rice cultivation have an impact on the nature of soil and the sustainability of agricultural system. This study aimed to determine the stratification of organic carbon and nitrogen in top soil from organic and conventional rice management. Top soil samples from organic and conventional rice management were taken before planting rice to find out the parameters of several soil characteristics. After rice was planted, top soil samples were taken at the depths of 0-4, 4-8, 8-12, 12-16, 16-20, 20-24 and 24-28 cm from organic and conventional rice fields, to determine the total organic carbon, total nitrogen and nitrate. The results show that organic rice management will provide better soil properties. Stratification of organic carbon and nitrogen was found in top soil from organic and conventional rice fields. Organic rice field appeared to have organic carbon content that was significantly higher than that of conventional rice field, and it is concentrated on top soil surface. The total nitrogen content in layers 0-4 cm and 4-8 cm in organic rice field was considerably higher than in conventional, but the content was different in layers 8-24 cm. Nitrate content was significantly different in top soil 12-16, 16-20 and 20-24 cm, significantly in top soil 8-12 cm, with nitrate in top soil of conventional rice field higher than in organic rice field. However, it was not significant in 0-4 cm and 4-8 cm top soils. This condition was influenced by organic and synthetic chemical fertilization, nitrification, denitrification and leaching.

2019 ◽  
Vol 9 (2) ◽  
pp. 135
Author(s):  
GITA YUNI PERMATASARI ◽  
ANAK AGUNG ISTRI KESUMADEWI ◽  
ANAK AGUNG NGURAH GEDE SUWASTIKA

Ammonium Dynamics and Latosol Wetland Nitrates in Conventional Cultivation of Local and Hybrid Rice in Jatiluwih Subak. Plants absorb nitrogen in the form of ammonium (NH4+) and nitrate (NO3-). Each sample was analyzed for its ammonium and nitrate levels using macro Kjeldahl method. The results showed that the concentration of ammonium and nitrate in soil of the two rice fields were similar. The ions contents were as following: nitrate (2,67%) and ammonium (2,67%) in local rice, while those in hybrid rice fields were amounted of 1,48% and 4,59% respectivelly. The concentration of ammonium and nitrate on 21 DAC in soil samples remained low and rose at 28 DAC, then decreased at 56 DAC. It means that the times of fertilizing always done by the farmers were not appropriate.The content of ammonium and nitrate in water phase much lower than that in soils for both types of rice plants. The highest concentration of ammonium in local rice fields was 0,093% at the time of tillage and the lowest 0% on 21 DAC, while the highest nitrate concentrations in local rice water was 0,37% at 70 DAC and the lowest was 0% at of 21 DAC. The highest ammonium concentrations in hybrid rice 0,33% at 14 DAC, and the lowest 0% at 42 HST, while the highest nitrate content 0,47% at 42 DAC and the lowest 0% at the time of tillage. The fertilizing times recommended based on the findings of this reaserch is at 10-15 DAC for both rice types and another subsquent fertilization on 60-65 DAC for local rice and 40-45 DAC in hybrid rice.


Author(s):  
Md. Rafiqul Islam ◽  
Golam Kibria Muhammad Mustafizur Rahman ◽  
Md. Abu Saleque

A laboratory experiment was conducted in Soil Science Division of Bangladesh Rice Research Institute (BRRI) during 2010-11 aimed to determine the effects of different industrial effluents on some soil chemical properties under long-term industrial wastewater irrigated rice field. Effluents irrigation created some differences in soil pH, electrical conductivity and organic carbon. The pH in all soil depth was higher with wastewater irrigated rice field. Irrigation with wastewater increased in all the effluents irrigated rice fields; the electrical conductivity (EC) was remarkable higher with  all soil depth than the control field. In all the rice fields soil (Control + effluents irrigated fields), the organic carbon content (%) started to decrease sharply with the increase in soil depth. Organic carbon content was slightly higher with wastewater irrigated rice soils. Exchangeable cations (Ca, Mg, K and Na), trace elements (Zn, Fe, Mn and Cu) and heavy metals (Pb, Cd, Cr and Ni) were increased through irrigation with wastewater in rice–rice cropping pattern.


2012 ◽  
Vol 518-523 ◽  
pp. 5121-5125 ◽  
Author(s):  
Kui Peng

Agricultural modernization is changing nutrients biogeochemical cycles in soil as well as regional and global environmental changes. Taking a typical agricultural county of as an example, the article studied the changes of topsoil (0~20cm) bulk, contents and storages of organic carbon and total nitrogen in an agricultural county of North China due to agricultural reform process from 1983-2004, by taking soil samples and experimental determination. The results showed that soil pH decreased, bulk increased lightly, the contents of organic carbon and total nitrogen significantly increased by 70% and 133% respectively, and the storages of organic carbon and total nitrogen in the county increased by 72% and 113% respectively from traditional agriculture to modern. Agricultural modernization including heavy chemical fertilizers inputs, machine irrigation and agricultural mechanizations were the important factors driving these changes.


Author(s):  
Yuriy Yuryi Kravchenko ◽  
Zhang Xingyi ◽  
Song Chun-yu ◽  
Yarosh Anna Viyacheslavivna ◽  
Voitsekhivska Olena Vasilivna

The main purpose of this study was to determine the size and direction of the seasonal dynamics of organic carbon (Сmicro) and nitrogen (Nmicro) biomass of microorganisms and microbial index (Cmicro : Corg) of natural and agrocenoses with their different uses. Field research methods involved taking of soil samples in 0-10-, 10-20- and 20-40 сm layers. Under laboratory conditions, the content of total soil carbon was determined by dry oxygen combustion on a Vario EL III analyzer (Elementar Analyzensysteme, Hanau, Germany). The carbon content of microbial biomass (Сmicro) was determined by chloroform fumigation extraction method (CFE). To freshly taken soil samples (2 hours) and soil samples after their 24-hour fumigation with chloroform vapors, 0.5 M K2SO4 was added to extract biomass lysis products of soil microorganisms. The content of organic carbon and nitrogen in the biomass of microorganisms in the obtained filtrates was determined on the Elementar Liqui TOC II, Analyzensysteme GmbH, Germany. The carbon content of microbial biomass was calculated from the difference between carbon in fumigated and control samples using a factor of 0,45 - for carbon and 0,54 – for nitrogen. The microbial index of soils was determined by the ratio between the carbon of microorganisms and the total organic carbon of the soil – Cmicro : Corg • 100 (%). Average values and confidence intervals were determined for each defined indicator. The Bonferoni method was used to correct the errors of multiple comparative samples of a one-way ANOVA analyze. K. Pearson’s linear correlation analysis was used to establish the relationships between the dynamics of carbon biomass of microorganisms and organic carbon of the soil during the growing season. Our research has shown the dynamics of Сmicro, Nmicro, Сmicro : Nmicro and Cmicro : Corg during the growing season. Analysis of the box plot showed the largest amplitude of Сmicro changes in the upper 0-10 cm layer of izogumusol. The smallest difference in the quartile range (IQR0,25-0,75) was for no-till and overhang (Ab) in the upper 0-10-, no-till (NT) and fallow (F) - in the layer 10-20- and plowing (CT) - in a layer of 20-40 cm. The content of organic carbon biomass of microorganisms in the upper layer of izogumusol at the beginning of the growing season had the highest values of Ab (577,79  1,64 mg/kg), NT (485,43  1,97 mg/kg) and CT (470,43  0,77 mg/kg), the smallest - for F (370,15  2,18 mg/kg). The content of Nmicro during this period decreased from Ab to Comb (combined tillage), NT, CT, Rot (rotary tillage), RT (reduced (ridge) tillage) and F, respectively. In the 20-40 cm layer, the highest values of Сmicro and Nmicro were observed in mid-July. The lowest values of Сmicro and Nmicro and the largest – Сmicro : Nmicro were found in late August for all variants and layers of the study. The dynamics of the microbial index resembled the trends of Сmicro and Nmicro. The largest share of Smicro in Sorghum during the growing season, on average was: - Ab (1,82  1,85 %) and NT (1,66  1,52 %) - in the layer 0-10-, - Ab (1,23  1,27 %) and NT (1,29  1,32 %) - in the layer 10-20- and - Ab (1,19  1,09 %) and F (1,11  1,077 %) - in a layer of 20-40 cm. Different use of izogumusol affected the amplitude of seasonal changes of Сmicro and Nmicro and did not affect on their direction. The maximum content of Сmicro and Nmicro was observed at the beginning of the growing season - in a layer of 0-10 cm and in mid-July - in a layer of 20-40 cm, the minimum - at the end of the summer period. During this period, the widest ratio of Сmicro : Nmicro was for F and CT - in the layer 0-20 cm and CT and Rot - in the layer 20-40 cm. The Pearson’s correlation coefficient between Сmicro and Corg increased from the upper 0-10- to the lower 20-40 cm layer of izogumusol. "Strong" and "high" negative correlations have been established between Сmicro and Corg, but no pattern has been found between the correlation coefficient and tillage technologies.


2016 ◽  
Author(s):  
Ruzhen Wang ◽  
Linyou Lü ◽  
Courtney A. Creamer ◽  
Heyong Liu ◽  
Xue Feng ◽  
...  

Abstract. Soil coarseness decreases ecosystem productivity, ecosystem carbon and nitrogen stocks, and soil nutrient contents in sandy grasslands. To gain insight into changes in soil carbon and nitrogen pools, microbial biomass, and enzyme activities in response to soil coarseness, a field experiment of sand addition was conducted to coarsen soil with different intensities: 0 % sand addition, 10 %, 30 %, 50 %, and 70 %. Soil organic carbon and total nitrogen decreased with the intensification of soil coarseness across three depths (0–10 cm, 10–20 cm, and 20–40 cm) by up to 43.9 % and 53.7 %, respectively. At 0–10 cm, soil microbial biomass carbon (MBC) and nitrogen (MBN) declined with soil coarseness by up to 44.1 % and 51.9 %, respectively, while microbial biomass phosphorus (MBP) increased by as much as 73.9 %. Soil coarseness significantly decreased the activities of β-glucosidase, N-acetyl-glucosaminidase, and acid phosphomonoesterase by 20.2 %–57.5 %, 24.5 %–53.0 %, and 22.2 %–88.7 %, respectively. Soil coarseness enhanced microbial C and N limitation relative to P, indicated by the ratios of β-glucosidase and N-acetyl-glucosaminidase to acid phosphomonoesterase (and MBC:MBP and MBN:MBP ratios). As compared to laboratory measurement, values of soil parameters from theoretical sand dilution was significantly lower for soil organic carbon, total nitrogen, dissolved organic carbon, total dissolved nitrogen, available phosphorus, MBC, MBN, and MBP. Phosphorus immobilization in microbial biomass might aggravate plant P limitation in nutrient-poor grassland ecosystems as affected by soil coarseness. We conclude that microbial C:N:P and enzyme activities might be good indicators for nutrient limitation of microorganisms and plants.


2021 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Arum Asri Trisnastuti ◽  
Edi Purwanto ◽  
Ari Susilowati

Organic farming can increase the diversity of soil bacterial. This research aimed to compare the profile of microbial community of organic and conventional rice fields in early (0 Day After Planting/DAP), mid (15 DAP), and late (45 DAP) fertilizer application period. The total DNA genome from the soil sample was extracted then analyzed metagenomically using Next Generation Sequencing (NGS). There was nine genus of bacteria found in high relative abundance, 95.28%, while 4.72% included in Domain of Archaea (genus Methanosaeta). Phylum of Firmicutes (genus Clostridium has 24.50% relative abundance, Bacillus 11.90%, Lactobacillus 9.69%); Proteobacteria (genus Defluviicoccus 12.10%, Buchnera 18.46%, Rosenbergiella 2.46%); and Actinobacteria (genus Nocardioides 12.21%, and Streptomyces 3.96%). Meanwhile, the average plant height of organic rice fields was shorter than conventional rice fields got directly measured coincided with soil sampled. Based on alpha and beta diversity analysis, the highest community diversity and abundance were found in organic rice field soil samples taken at 45 DAP, i.e., at the end of the fertilizer application period. However, in both organic and conventional rice field soils, there was almost no significant difference in the bacterial community, so it impacts that organic and conventional systems do not make a real difference in the total N, P available, CEC, and pH values. It makes a significant difference in organic C and organic matters.


Our Nature ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 1-8
Author(s):  
Dil Kumar Limbu ◽  
Madan Koirala ◽  
Zhanhuan Shang

Organic carbon and total nitrogen are important components of global carbon and nitrogen cycle in rangeland ecology.Objective of this study is to identify and quantify the present status of carbon and nitrogen pool in Himalayan rangeland and to make recommendations for enhancing carbon and nitrogen storage for rangeland management. To meet the aforementioned objectives, the field study was conducted in 2011 -2013. The study showed that soil organic carbon was highest in legume seeding sub-plot in top soil (28.53 ± 2.6) t/ha of heavily grazed area. Similarly, total nitrogen was highest in bottom soil (2.81 ± 0.16) t/ha in legume seeding sub-plot of enclosed un-grazed area. Usually, heavily grazed and legume seeding sub-plots had more soil organic carbon and total nitrogen concentration compared to others. The value of above ground biomass was in increasing trend with decreasing grazing intensity but for below ground biomass, it was just the reverse. On the basis of the results of this study, the grazing intensity is positively correlated with above ground and below ground biomass and soil organic carbon but no correlation with soil total nitrogen and soil bulk density.


2021 ◽  
Vol 36 (2) ◽  
pp. 259
Author(s):  
Supriyadi Supriyadi ◽  
Intan Lestari Prima Vera ◽  
Purwanto Purwanto

The high demand of rice is fulfilled by intensification, particularly with the use of chemical fertilizer that allegedly causes land and environmental problems in a long term. As public awareness of environmental health rises, more rice fields are managed organically and semi-organically, but there are still many that manage rice fields inorganically. Assessment of soil quality of the three types of rice field management is important to prove that organic rice fields have better soil quality than semi-organic and inorganic rice fields, as well as to evaluate soil conditions on the location. This research was conducted in Girimarto, Wonogiri, Indonesia, using a descriptive explorative method with a survey approach on three points of each management system of rice fields, which are organic, semi-organic and inorganic rice fields. Statistical analysis was performed by Pearson correlation analysis and principal component analysis (PCA) to determine the indicators affecting soil quality, which are called the minimum data set (MDS). There were selected indicators in this research, including total microbes, base saturation, cation exchangeable capacity and organic carbon. Based on the results of the study, organic rice fields have the best soil quality with a score of soil quality index (SQI) of 2.3, compared to semi-organic rice field SQI (2.2) and inorganic rice field SQI (1.7). The results indicate that organic management contributes to better soil quality and environment.


2017 ◽  
Vol 12 (No. 4) ◽  
pp. 212-219 ◽  
Author(s):  
M. Mujiyo ◽  
B.H. Sunarminto ◽  
E. Hanudin ◽  
J. Widada ◽  
J. Syamsiyah

The use of organic fertilizers in the organic paddy/rice field can increase methane (CH<sub>4</sub>) production, which leads to environmental problems. In this study, we aimed to determine the CH<sub>4</sub> production potential (CH<sub>4</sub>-PP) by a soil profile from samples using flood incubation. Soil properties (chemical, physical, and biological) were analyzed from soil samples of three different paddy farming systems (organic, semi-organic, and conventional), whilst soil from teak forest was used as the control. A significant relationship was determined between soil properties and CH<sub>4</sub>-PP. The average amount of CH<sub>4</sub>-PP in the organic rice field profile was the highest among all the samples (1.36 µg CH<sub>4</sub>/kg soil/day). However, the CH<sub>4</sub> oxidation potential (CH<sub>4</sub>-OP) is high as well, as this was a chance of mitigation options should focus on increasing the methanotrophic activity which might reduce CH<sub>4</sub> emissions to the atmosphere. The factor most influencing CH<sub>4</sub>-PP is soil C-organic (C<sub>org</sub>). C<sub>org</sub> and CH<sub>4</sub>-PP of the top soil of organic rice fields were 2.09% and 1.81 µg CH<sub>4</sub>/kg soil/day, respectively. As a consequence, here the mitigation options require more efforts than in the other farming systems. Soil with various amounts of C<sub>org</sub> reached a maximum point of CH<sub>4</sub>-PP at various time after incubation (20, 15, and 10 days for the highest, medium, and the lowest amounts of C<sub>org</sub>, respectively). A high amount of C<sub>org</sub> provided enough C substrate for producing a higher amount of CH<sub>4</sub> and reaching its longer peak production than the low amount of C<sub>org</sub>. These findings also provide guidance that mitigation option reduces CH<sub>4 </sub>emissions from organic rice fields and leads to drainage every10–20 days before reaching the maximum CH<sub>4</sub>-PP. 


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Innocent Djègbè ◽  
Merdie Zinsou ◽  
Edia Flavien Dovonou ◽  
Geneviève Tchigossou ◽  
Murielle Soglo ◽  
...  

Abstract Background Irrigation systems have been identified as one of the factors promoting malaria disease around agricultural farms in sub-Saharan Africa. However, if improved water management strategy is adopted during rice cultivation, it may help to reduce malaria cases among human population living around rice fields. This study aimed to assess the impact of the different irrigation practices on malaria transmission, as well as to evaluate the water management system that will best mitigate malaria transmission in Malanville, Benin. Methods Knowledge, Attitude and Practice (KAP) study was conducted on 104 households staying on and around the rice fields in Malanville. The study focused on the frequency of mosquito bites and preventive measures against malaria as well as soil preparation and rice planting methods. Mosquito larvae density was assessed in different water management system: continuous flooding (CF) or intermittent flooding (IF), deep tillage (DT) or minimal tillage (MT) and normal levelling (NL) or abnormal levelling (AL) in an experimental hut set-up. Larvae were collected using dipping methods and their density was determined. Results Three tillage systems, which include the use of tiller, plow and hoe, were identified on the rice field. Continuous flooding was the only irrigation system used by farmers. Retrospective data from Malanville Health Centre revealed higher malaria cases during rice production season, which was also confirmed by field participants. The density of Anopheles larvae was reduced by 80.8%, 30.8% and 40.7% (P = 0.000) during transplanting, tillering and maturation periods, respectively with intermittent flooding compared to continuous flooding. In addition, a clear reduction of larva density was observed with both intermittent flooding systems applied to minimal tillage (MT + IF + NL) and intermittent flooding applied to deep tillage (DT + IF + AL), showing that intermittent flooding could reduce the abundance of malaria vector in rice fields. Conclusion Recommending intermittent flooding technology for rice cultivation may not only be useful for water management but could also be an intentional strategy to control mosquitoes vector-borne diseases around rice farms.


Sign in / Sign up

Export Citation Format

Share Document