Design of Two-Wheeled Self-Balancing Robot Based on Sensor Fusion Algorithm

2014 ◽  
Vol 8 (2) ◽  
pp. 216-221 ◽  
Author(s):  
Jianhai Han ◽  
◽  
Xiangpan Li ◽  
Qi Qin

A two-wheeled, self-balancing robot is proposed using 6-axis MEMS sensors MPU6050 to measure its posture. The sensors integrated with a 3-axis gyroscope and a 3-axis accelerometer, can output the inclination of the robot based on sensor fusion algorithm. A handheld remote controller sends out commands to the robot such as forward, back, and turning around. According to the inclination and orientation commands, a 16-bit MCU using the PID control algorithm calculates the required control voltage for the motors, to adjust the robot’s posture and keep the body balanced. In this paper, the principle of the sensor fusion algorithm is fully described, and its effects are verified through related experiments. The experimental results show that the proposed robot is practical and able to balance using inexpensive MEMS sensors.

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5419
Author(s):  
Pieter Try ◽  
Steffen Schöllmann ◽  
Lukas Wöhle ◽  
Marion Gebhard

People with severe motor impairments like tetraplegia are restricted in activities of daily living (ADL) and are dependent on continuous human assistance. Assistive robots perform physical tasks in the context of ADLs to support people in need of assistance. In this work a sensor fusion algorithm and a robot control algorithm for localizing the user’s mouth and autonomously navigating a robot arm are proposed for the assistive drinking task. The sensor fusion algorithm is implemented in a visual tracking system which consists of a 2-D camera and a single point time-of-flight distance sensor. The sensor fusion algorithm utilizes computer vision to combine camera images and distance measurements to achieve reliable localization of the user’s mouth. The robot control algorithm uses visual servoing to navigate a robot-handled drinking cup to the mouth and establish physical contact with the lips. This system features an abort command that is triggered by turning the head and unambiguous tracking of multiple faces which enable safe human robot interaction. A study with nine able-bodied test subjects shows that the proposed system reliably localizes the mouth and is able to autonomously navigate the cup to establish physical contact with the mouth.


2012 ◽  
Vol 490-495 ◽  
pp. 2371-2375
Author(s):  
Guang Shun Wu ◽  
Li Peng Zhang ◽  
Zhi Rui Li

In order to obtain the brake’s performance and related characteristics accurately and completely, a brake inertia dynamometer with the method of mechanical and electric inertia simulation was designed in this paper. By adjusting the output torque of the motor and inertia fly wheels, the equivalent inertia of the motorcycle was simulated on the inertia dynamometer. The relation between simulated inertia and output torque of the motor was presented. Due to the strong interference and high requirement of control accuracy, a PID control algorithm was proposed for the rotational speed contro1. Moreover, Kalman filter was designed to eliminate the random noise and industrial frequency disturbance. The experimental results demonstrated that the inertia dynamometer’s accuracy and efficiency were improved significantly. Moreover, the brake testing platform worked stably and reliably.


2019 ◽  
Vol 8 (2) ◽  
pp. 6040-6046

Emerging Internet of Things technology plays the major role in modern healthcare not only for sensing but also in recording, communication and display results. The major role of an intensive care unit (ICU) is to improve patient health such as bringing about a change in the treatment or move the patient to a step-down unit etc. Monitoring also shows the extent of observance with a formulated standard of care. In ICU, care should be taken to monitor medical parameters, such as EEG, EMG, BP etc , continuously. In recent health care applications such as real time human health condition monitoring, patient information management etc, IoT technology brings convenience of general practitioner and human, since it is applied in various medical areas, the Body Sensor Network (BSN) is one of the main technology of IoT based medical applications, where a tiny smart and lightweight wireless sensor nodes are used for monitoring patient’s health condition. Hence, this paper proposes BSN integrated with IoT based sensor fusion algorithm to save human life those who are in critical condition. Sensor fusion algorithm is used to detect the criticality of the patient’s health condition and IoT technology is used for communicating information. The testbed has been developed using Rasberry Pi controller, EMG sensor,, BP sensor etc and tested. The tested results also analyzed.


2017 ◽  
Vol 20 (K3) ◽  
pp. 45-52
Author(s):  
To Duc Nguyen

This research not only describes the design and implementation of two - wheeled self - balancing robot, but also shows how to simulate the platform in Simulink Matlab using Proportional–Integral–Derivative (PID) cascade control rule, then compares it with reality platform. A Kalman filter is used for state reconstruction in the final implementation. A cascaded PID control algorithm was proposed to combine the balancing and movement. The movement of the robot is controlled by using a distance controller that use rotary encoder sensor to measure its traveled distance. Besides the robot is able to move forward, backward, turning and reach the desired angle position by calculating the body's tilt angle. The experiment shows that the robot is likely to climb up slope with upon 25 degrees. Last but not least, this research also shows how to control the robot by using smartphone and C# form on laptop.


2015 ◽  
Vol 2 (1) ◽  
pp. 6-12
Author(s):  
Agus Sugiarta ◽  
Houtman P. Siregar ◽  
Dedy Loebis

Automation of process control in chemical plant is an inspiring application field of mechatronicengineering. In order to understand the complexity of the automation and its application requireknowledges of chemical engineering, mechatronic and other numerous interconnected studies.The background of this paper is an inherent problem of overheating due to lack of level controlsystem. The objective of this research is to control the dynamic process of desired level more tightlywhich is able to stabilize raw material supply into the chemical plant system.The chemical plant is operated within a wide range of feed compositions and flow rates whichmake the process control become difficult. This research uses modelling for efficiency reason andanalyzes the model by PID control algorithm along with its simulations by using Matlab.


2021 ◽  
Vol 11 (9) ◽  
pp. 3921
Author(s):  
Paloma Carrasco ◽  
Francisco Cuesta ◽  
Rafael Caballero ◽  
Francisco J. Perez-Grau ◽  
Antidio Viguria

The use of unmanned aerial robots has increased exponentially in recent years, and the relevance of industrial applications in environments with degraded satellite signals is rising. This article presents a solution for the 3D localization of aerial robots in such environments. In order to truly use these versatile platforms for added-value cases in these scenarios, a high level of reliability is required. Hence, the proposed solution is based on a probabilistic approach that makes use of a 3D laser scanner, radio sensors, a previously built map of the environment and input odometry, to obtain pose estimations that are computed onboard the aerial platform. Experimental results show the feasibility of the approach in terms of accuracy, robustness and computational efficiency.


2021 ◽  
Vol 1 ◽  
pp. 1123-1132
Author(s):  
Tatsuya Oda ◽  
Shigeru Wesugi

AbstractDuring the cold season, the cold protective products are often short during evacuation life after a natural disaster. If evacuees can make and wear simple cold protective gears by using materials obtainable on site, it will reduce the burden on the evacuees in emergent situation. Therefore, we investigated the structure constructed by folding newsprint paper, which can improve the heat retention effect and be applied to various body shapes. Focusing on the glide reflection structure repeating a smaller chamber, the basic size was determined by experiments with reference to the accordion shape, and the experimental results indicated that the heat retention effect was significantly greater than that of a mere air layer and those of ordinary fabrics. Next, it was found that the apex angle of structure had no significant difference in the heat retention effect. Then, the dimensions of the structure were determined to maintain the air layer under the pressure of the clothes by simulation of structural analyses. Finally, we made a temporary cold protective gear that can practically cover the trunk of the body and found that the heat retention effect was significantly higher than that of unprocessed newsprint and that of accordion shape.


2013 ◽  
Vol 773 ◽  
pp. 87-90
Author(s):  
Chen Wang ◽  
De Zhou Meng ◽  
Xu Fang Bo

Based on the background of wind power, considering the wind blade sweep area on the uneven distribution, this paper is using the PID control algorithm to control the pitch system. At the same time, this paper is using Siemens SCL to programming, simulating on the experimental platform. Simulation results show the validity of the theory and the feasibility of the system, realizing variable pitch control of fan blade.


2015 ◽  
Vol 764-765 ◽  
pp. 1319-1323
Author(s):  
Rong Shue Hsiao ◽  
Ding Bing Lin ◽  
Hsin Piao Lin ◽  
Jin Wang Zhou

Pyroelectric infrared (PIR) sensors can detect the presence of human without the need to carry any device, which are widely used for human presence detection in home/office automation systems in order to improve energy efficiency. However, PIR detection is based on the movement of occupants. For occupancy detection, PIR sensors have inherent limitation when occupants remain relatively still. Multisensor fusion technology takes advantage of redundant, complementary, or more timely information from different modal sensors, which is considered an effective approach for solving the uncertainty and unreliability problems of sensing. In this paper, we proposed a simple multimodal sensor fusion algorithm, which is very suitable to be manipulated by the sensor nodes of wireless sensor networks. The inference algorithm was evaluated for the sensor detection accuracy and compared to the multisensor fusion using dynamic Bayesian networks. The experimental results showed that a detection accuracy of 97% in room occupancy can be achieved. The accuracy of occupancy detection is very close to that of the dynamic Bayesian networks.


Sign in / Sign up

Export Citation Format

Share Document