scholarly journals Development of High-Performance Polycrystalline CVD Diamond-Coated Cutting Tools Using Femtosecond Lasers

2021 ◽  
Vol 15 (4) ◽  
pp. 413-421
Author(s):  
Xiaoxu Liu ◽  
◽  
Osamu Konda ◽  
Hiroko Furuhashi ◽  
Kohei Natsume ◽  
...  

Pulse laser grinding (PLG), an edge-shaping process, was developed previously to implement high-performance cutting tools. In this study, two femtosecond (fs) lasers with wavelengths of 1045 nm and 257 nm were used to conduct PLG on chemical vapor deposited (CVD) diamond-coated tool edges, as the fs laser is reported to have less thermal impact and the potential to improve the material crystallinity. We investigated the effects of the laser parameters on the tool edge formation and microstructural changes. The results show that although the infrared fs laser could – compared to the conventional nanosecond (ns)-laser PLG – naturally suppress surface thermal damage, the roughness of the processed surface remained relatively high with an Rz of 0.21 μm. However, under the optimal laser parameters proposed in this paper, an ultraviolet fs-laser PLG was used to obtain a much smoother edge, reducing Rz to approximately 0.08 μm. Moreover, scanning electron microscopy images indicated that the longitudinal machining marks on the ns-laser-processed surface were significantly reduced, with virtually no attached debris on the surface. Furthermore, from the Raman spectra, a significant increase in the diamond peak intensity was observed, indicating that the crystallinity of the CVD diamond (CVDD) was improved following ultraviolet-fs-laser PLG. These results demonstrate that edge shaping and structural modification of polycrystalline CVDDs can be integrated into ultraviolet-fs-laser PLG.

2010 ◽  
Vol 431-432 ◽  
pp. 466-469
Author(s):  
Dong Can Zhang ◽  
Bin Shen ◽  
Fang Hong Sun ◽  
Ming Chen ◽  
Zhi Ming Zhang

The diamond and diamond-like carbon (DLC) films were deposited on the cobalt cemented tungsten carbide (WC-Co) cutting tools respectively adopting the hot filament chemical vapor deposition (HFCVD) technique and the vacuum arc discharge with a graphite cathode. The scanning electron microscope (SEM), X-ray diffraction spectroscopy (XRD) and Raman spectroscopy were used to characterize the as-deposited diamond and DLC films. To evaluate their cutting performance, comparative turning tests were conducted using the uncoated WC-Co and as-fabricated CVD diamond and DLC coated inserts, with glass fiber reinforced plastics (GFRP) composite materials as the workpiece. The research results exhibited that diamond and DLC coated inserts had great advantages in cutting tests compared to uncoated insert. The flank wear of the CVD diamond coated insert maintained a very low value about 50μm before the cutting tool failure occurred. For the DLC coated insert, its flank wear always maintained a nearly constant value of 70~200μm during whole 45 minutes turning process. The flank wear of CVD diamond coated insert was lower than that of DLC coated insert before diamond films peeling off.


Author(s):  
Xiaoxu Liu ◽  
Kohei Natsume ◽  
Satoru Maegawa ◽  
Fumihiro Itoigawa

Abstract To realize the high performance of CVD diamond coated tools, a tool edge shaping process named pulse laser grinding (PLG) was developed with short pulse laser in our group previously. In this study, femtosecond laser was innovatively to be used to conduct the PLG process, since femtosecond laser is famous for its less thermal impact and some newly reported surface modification effect. The results show that PLG processing under high laser fluence of femtosecond laser could achieve roundness around 1 μm, which is similar to that of conventional PLG process with nanosecond laser, although the roughness of processed surface has been worse due to the redeposited debris. Furthermore, an interesting phenomenon has been confirmed again that under low laser fluence irradiation of femtosecond laser, the CVD diamond surface shows improved crystallinity of diamond structure. Based on this, a two-step tool edge processing method was proposed, which could realize the edge shaping and surface modification together with one laser processor. And the results show that the processed tool edge with much less edge roundness and surface roughness, and the tip part with better diamond crystallinity, indicating that sharper and hardness tool edge could be possibly to be realized with femtosecond laser.


2008 ◽  
Vol 375-376 ◽  
pp. 92-96 ◽  
Author(s):  
Wen Zhuang Lu ◽  
Dun Wen Zuo ◽  
Min Wang ◽  
Feng Xu

Electroplated Cr, Ni and Cu were used as interlayer for chemical vapor deposition (CVD) diamond coating on WC–Co cemented carbide cutting tools. The electroplated interlayers were studied by Scanning Electron Microscope (SEM), Electron Probe Micro Analyzer (EPMA) and X-ray diffraction (XRD). The CVD diamond coatings were studied by SEM and Raman Scattering Spectroscopy (Raman). The experimental results show that there is diffusion bonded interface between electroplated layer and WC-Co substrate after H plasma treatment, the bond between electroplated layers and WC-Co substrate changes from mechanical bond to metallurgical bond and the adhesion becomes stronger. Electroplated Cr interlayer forms new phases of Cr3C2 and Cr7C3 under CVD conditions, while electroplated Ni and Cu interlayers do not form carbides under CVD conditions. Cr carbides have good chemical compatibility to diamond, and they are propitious to diamond nucleation and growth during the deposition period. The diamond crystal microstructure, diamond quality and adhesion on Cr interlayer are better than those on electroplated Ni and Cu interlayers.


2009 ◽  
Vol 1243 ◽  
Author(s):  
Flávia A. Almeida ◽  
Margarida Amaral ◽  
Ermelinda Salgueiredo ◽  
António J.S. Fernandes ◽  
Florinda M. Costa ◽  
...  

ABSTRACTCVD diamond coated tools are developed for applications as different as turning of cemented carbides and bone drilling. The diamond films are deposited by Hot Filament Chemical Vapor Deposition (HFCVD), with grain sizes varying from conventional micrometric (12 μm) to nanometric (< 100 nm) and film thickness up to 50 μm. Silicon nitride (Si3N4) ceramics are chosen for the base material in order to guarantee maximal adhesion. Both the micrometric and nanometric CVD diamond grades endure the cemented carbide turning showing slight cratering, having flank wear as the main wear mode. However, nanocrystalline diamond present the best behavior regarding cutting forces (<150 N) and tool wear (KM=30 μm, KT=2 μm and VB=110 μm) and workpiece surface finishing (Ra=0.2 μm). In the case of the dental drilling experiments, a polymeric laminated test block is used to simulate the human mandible and maxilla. The temperature rise during drilling is monitored to prevent overheating above 42–47 °C that is known to cause tissue death and implant failure. It is possible to drill with a CVD diamond Si3N4 coated tool with significantly lower forces (fourfold smaller), lower rise in temperature (4°C less), lower spindle speeds (100 rpm) and higher infeed rates (30 mm/min), when compared to the commercial steel (AISI 420) drill bits.


2012 ◽  
Vol 499 ◽  
pp. 366-371 ◽  
Author(s):  
Jian Guo Zhang ◽  
Ben Wang ◽  
Fang Hong Sun ◽  
Hang Gao

Carbon fiber reinforced plastics (CFRP) is difficult to machine because of the extremely abrasive nature of the carbon fibers and its low thermal conductivity. CVD diamond films have many excellent properties such as wonderful wear resistance, high thermal conductivity and low friction coefficient, therefore depositing diamond films on the surface of drills is thought to be an effective way to elongate the lifetime of drills and improve the cutting performance. In this study, diamond films are deposited on the WC-Co drill using hot filament chemical vapor deposition (HFCVD) method. The results of characterization by the scanning electron microscope (SEM) and Raman spectrum indicate that the fabricated CVD diamond coated drill is covered with a layer of uniform and high-purity diamond films. The cutting performance of as-fabricated CVD diamond coated drill is evaluated in dry drilling CFRP, comparing with the uncoated WC-Co drill. The results demonstrate that the CVD diamond coated drill exhibits much stronger wear resistance. Its flank wear is about 50μm after drilling 30 holes, about one-third of that of WC-Co drill. Machining quality of the exit and internal wall of drilled holes shows better surface finish obtained by coated drill, which suggests that CVD diamond coated tool has great advantages in drilling CFRP.


2006 ◽  
Vol 987 ◽  
Author(s):  
Naira Maria Balzaretti ◽  
Altair Soria Pereira ◽  
Rafael Vieira Camerini ◽  
Sérgio Ivan dos Santos ◽  
João Alziro Herz da Jornada

AbstractIn this work we investigate the effect of processing at high pressure-high temperature (HPHT) on the adhesion of CVD diamond coatings on WC-Co substrates. The samples consisted of WC-Co substrates coated with thin diamond films (10 – 40 μm thick) grown by microwave plasma (MWCVD) CVD. The substrates were previously etched in order to remove the Co from the surface region. The adhesion of the film and its wear resistance improved after the HPHT treatment. SEM images of the cross section of the coated substrate revealed that Co infiltrated back to the region where it was previously removed. The results indicate that it is possible to take advantage of the HPHT plants already available around the world to produce, besides PCD's and diamond powder, high-performance CVD diamond cutting tools with the advantage of requiring less demanding processing conditions.


2006 ◽  
Vol 315-316 ◽  
pp. 720-724 ◽  
Author(s):  
Tie Fu ◽  
Qi Xun Yu ◽  
Si Qin Pang

Diamond film made by adopting the Chemical Vapor Deposition (CVD) technology is a promising superhard material. The mechanical and physical properties of CVD diamond is between natural diamond and hot press polycrystalline diamond. The cutting tools made by CVD diamond can machine many kinds of material, such as nonferrous metals, non metallic materials and composites. CVD diamond is classified as thin and thick films, and the thick film cutting tools are widely used. However, the superhard cutting tools cannot be applied to the cutting of iron family metal and molybdenum (Mo). In this paper, data and curves on machining test of CVD diamond cutting tools are listed and then analyzed.


2016 ◽  
Vol 874 ◽  
pp. 333-338
Author(s):  
Hong Xiu Zhou ◽  
Ming Lei Li ◽  
Bo Ya Yuan

Cutting tools of WC-Co are widely used in cutting field. Nevertheless, its wear resistance and lifetime are not qualified for the high performance cutting. Therefore, diamond films are deposited on WC-Co substrates to overcome its disadvantages. In this paper we investigate the effects of the pretreatment on substrates and as-deposited WC-Co samples by using a hot filament chemical vapor deposition (HFCVD) reactor. Prior to deposition, the WC-Co substrates were submitted to surface roughening by Murakami reagent and to surface binder removal by Caro’ acid with varied durations. Surface roughness Ra determined by AFM varied from 110 to 279 nm. The diamond films are characterized by scanning electron microscopy (SEM) and Raman spectroscopy, whose results present a sharp peak at 1336 cm-1 indicating sp3 diamond. The adhesion between the diamond films and substrates was evaluated by pull-off tests with the highest adhesion strength is 26.92 MPa. Cracked interface is characterized between diamond films and substrates, using SEM and energy dispersive spectroscopy (EDS) to analyze the adhesion performance.


2012 ◽  
Vol 497 ◽  
pp. 73-77 ◽  
Author(s):  
Jian Guo Zhang ◽  
Liang Wang ◽  
Bin Shen ◽  
Fang Hong Sun

CVD diamond coated inserts with different coating thickness are fabricated using hot filament chemical vapor deposition (HFCVD) method. Scanning electron microscope (SEM) and Raman spectroscopy are introduced to characterize the diamond films. The cutting performance of as-fabricated CVD diamond coated inserts is evaluated in dry turning aluminum alloy. The uncoated WC-Co tool is also adopted in the cutting tests for the sake of comparability. The testing results show that diamond coated tools exhibit much better cutting performance. Coating thickness affects the characteristics of diamond coated cutting tools, the thicker of coating, the more adhesive chips, but the better delamination resistant. The uncoated WC-Co tool suffers adhesive wear for the built-up edge (BUE) breaking.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2505 ◽  
Author(s):  
Sergei Zenkin ◽  
Aleksandr Gaydaychuk ◽  
Vitaly Okhotnikov ◽  
Stepan Linnik

Chemical vapor deposition (CVD) diamond is a prospective thin film material for cutting tools applications due to the extreme combination of hardness, chemical inertness, and thermal conductivity. However, the CVD diamond cutting ability of ferrous materials is strongly limited due to its extreme affinity to iron, cobalt, or nickel. The diamond–iron interaction and the diffusion behavior in this system are not well studied and are believed to be similar to the graphite–iron mechanism. In this article, we focus on the medium-temperature working range of 400–800 °C of a CVD diamond–Fe system and show that for these temperatures etching of diamond by Fe is not as strong as is generally accepted. The starting point of the diamond graphitization in contact with iron was found around 400 °C. Our results show that CVD diamond is applicable for the cutting of ferrous materials under medium-temperature conditions.


Sign in / Sign up

Export Citation Format

Share Document