Building Passive Control in Japan

2009 ◽  
Vol 4 (3) ◽  
pp. 261-269 ◽  
Author(s):  
Kazuhiko Kasai ◽  
◽  
Masayoshi Nakai ◽  
Yutaka Nakamura ◽  
Hidekatsu Asai ◽  
...  

This paper discusses the following three key issues on passive control using dampers for seismic protection of buildings:1 Major experimental research on passive control of buildings: Tests using the world’s largest shaking table “E-Defense” from March to April 2009 evaluated a full-scale 5-story steel building with and without dampers. 2 Codes and specifications: The Japanese building code requires that the nonlinear time history analysis be performed for buildings with dampers or that energy-based analysis be conducted when steel dampers are used. Unlike code rules leading to iterative design, the specifications of the Japan Society of Seismic Isolation (JSSI) give direct design method (DDM) for target performance set by designers. 3 Damage-free structure and its design: Backed by government support, a large team of researchers and designers has developed a structure damage-free against a catastrophic earthquake, using dampers and super-high-strength steel frames. The structure and its design rule using DDM are being studied for inclusion in projected code.

2021 ◽  
Vol 11 (23) ◽  
pp. 11245
Author(s):  
Ruijie Zhang ◽  
Dan Ye ◽  
Jianting Zhou ◽  
Dengzhou Quan

At present, the seismic design research of underground structures in loess areas is lagging behind compared with practical engineering requirements. The selection of seismic calculation methods and parameters does not consider the influences of the special geological conditions in various regions, so their usefulness is limited. Based on the above problems, a modified displacement-based method (DBM) was proposed and its application was compared with the most commonly used methods of analysis (force-based design method, displacement-based design method, detailed equivalent static analysis numerical method, and the full dynamic time-history method). The results were also validated by considering data from shaking table tests conducted on a case study involving the underground Feitian Road subway station in Xi’an. The results show that compared with DBM, the average accuracy of the modified DBM technique is improved by 41.65%. The modified DBM offers good accuracy, simplicity in its model, a rapid analysis time, and easy convergence.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Yutao Pang ◽  
Li Wu

Although the knowledge and technology of performance-based earthquake engineering have rapidly advanced in the past several decades, current seismic design codes simply ignore the effect of aftershocks on the performance of structures. Thus, the present paper investigated the effect of aftershocks on seismic responses of multispan reinforced concrete (RC) bridges using the fragility-based numerical approach. For that purpose, a continuous girder RC bridge class containing 8 bridges was selected based on the statistical analysis of the existing RC bridges in China. 75 recorded mainshock-aftershock seismic sequences from 10 well-known earthquakes were selected in this study. In order to account for the uncertainty of modeling parameters, uniform design method was applied as the sampling method for generating the samples for fragility analysis. Fragility curves were then developed using nonlinear time-history analysis in terms of the peak curvature of pier column and displacement of bearings. Finally, the system fragility curves were derived by implementing Monte Carlo simulation on multinormal distribution of two components. From the results of this investigation, it was found that, for the RC continuous bridges, the influence of aftershocks can be harmful to both bridge components and system, which increases both the component fragility of the displacement of bearings and seismic curvature of pier sections and system fragility.


2016 ◽  
Vol 845 ◽  
pp. 233-239
Author(s):  
Buntara Sthenly Gan ◽  
Susumu Nakamura ◽  
Noriaki Sento ◽  
Kosuke Ito

Pile foundation equipped with a low-cost frictional type seismic isolation device is investigated. The frictional mechanism results from a contact between two surfaces of a half steel sphere mounted on the pile cap and the corresponding inner steel sphere embedded in the footing of upper structure. To verify the mechanical behaviors of the pile with frictional type seismic isolation device, tests, and its numerical simulations have been performed. The rotational friction device is found to be very effective in releasing the internal energy transferred from the pile foundation to the upper structure. The behavior of the friction-type device was studied by modeling using the nonlinear time history dynamic analysis. It was observed that the responses of the structures with devices can be approximated by using springs and dampers model.


2005 ◽  
Vol 128 (3) ◽  
pp. 364-369 ◽  
Author(s):  
Y. M. Parulekar ◽  
G. R. Reddy ◽  
K. K. Vaze ◽  
K. Muthumani

Passive energy dissipating devices, such as elastoplastic dampers (EPDs) can be used for eliminating snubbers and reducing the response of piping systems subjected to seismic loads. Cantilever and three-dimensional piping systems were tested with and without EPD on shaker table. Using a finite element model of the piping systems, linear and nonlinear time-history analysis is carried out using Newmark’s time integration technique. Equivalent linearization technique, such as Caughey method, is used to evaluate the equivalent damping of the piping systems supported on elastoplastic damper. An iterative response spectrum method is used for evaluating response of the piping system using this equivalent damping. The analytical maximum response displacement obtained at the elastoplastic damper support for the two piping systems is compared with experimental values and time history analysis values. It has been concluded that the iterative response spectrum technique using Caughey equivalent damping is simple and results in reasonably acceptable response of the piping systems supported on EPD.


Author(s):  
Yang Jie ◽  
Li ShaoPing ◽  
Yuan Fang ◽  
Xia ZuFeng ◽  
Huang XiaoLin

In this paper, the base-isolated design of Nuclear Island structure will be introduced, including the general requirement and the goal of the base-isolated design. Integrated assessment has been performed for the base-isolated design of Nuclear Island structure in the earthquake 0.6g. A series of nonlinear time-history analysis were performed to predict the maximum displacement and acceleration of the isolation layer, the maximum stress of the isolation units, and the floor response spectra of each story of the superstructure in the earthquake 0.6g, considering the realistic mechanical properties and the layout of the isolators. In order to provide realistic data to validate the numerical method, a reduced-scale earthquake simulation of base-isolated nuclear structure on a shaking table was carried out. The study was primarily focused on the response of superstructure and the isolation unit. The dynamic characteristic was examined, together with the vibration acceleration and displacement under different levels of seismic wave. The test results of a reduced-scale nuclear island model previously tested on a shaking table were compared with three-dimensional finite element simulation results. The results of this study provide the technical basis for the base-isolated design of Nuclear Island structure.


2013 ◽  
Vol 405-408 ◽  
pp. 1056-1062
Author(s):  
Qing Li Meng ◽  
Jun Chen ◽  
Chun Yu Chu

In this paper, a four-storey reinforced concrete frame infilled wall structure does not meet the seismic perform target, based on the seismic behavior target of both frame and infilled wall, to carry out the study on the passive control seismic strengthen of RC infilled wall structure with attached dampers. First, two kinds of passive control strengthen schemes were put forward. Scheme 1: Dampers were installed in the in-plane direction parallel with all 1-storey infilled walls; Scheme 2: Dampers were installed in the in-plane direction parallel with all 1-storey and 2-storey infilled walls. Then to establish the two types of passive control seismic strengthen model in OpenSees, carry out the rare earthquake nonlinear time-history analysis under El Centro, Parkfield and San Fenando ground motions. Finally, in accordance with the seismic performance target quantization index of RC Frame infilled wall structure used as hospital, i.e. considering storey drift ratio limit and infilled wall damage, judge the scheme 2 can meets the seismic performance target.


2014 ◽  
Vol 578-579 ◽  
pp. 1361-1365
Author(s):  
Lin Liu ◽  
Xuan Min Li ◽  
Wei Tian

Friction Pendulum Systems have been used as base isolation systems for both new construction and retrofit around the world. This paper presented its implementation in an office building located in Shanghai. To evaluate its impact on seismic performance of the retrofitted structure, models are needed to capture the intricate nonlinear behavior of both structural components and isolator elements. Nonlinear time history analysis of the building for the original and retrofitted cases was conducted to assess the efficiency of the isolation system at the high earthquake level. The numerical results indicate that the retrofitted structure experiences significantly less damage and less deformation due to the shake isolation and energy dissipation through the isolators.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Xiaoli Li ◽  
Yan Shi

This paper focuses on the seismic isolation design of near-fault bridges under the seismic excitations of near-fault ground motions in high-intensity earthquake zones and proposes a combined control system using lead rubber bearings (LRBs) and cable displacement restrainers (CDRs) along with ductility seismic resistance for the reinforced concrete piers. As part of the performance-based seismic design framework, this study provides the quantitative design criteria for multilevel performance-based objectives of a combined control system under conditions of frequent earthquake (E1), design earthquake (medium earthquake), and rare earthquake (E2). Moreover, in this study, a preliminary performance-based seismic isolation design for a near-fault actual highway bridge in high-intensity earthquake zones (basic peak of ground acceleration 0.4 g) was developed. Using nonlinear time-history analysis of the actual bridge under near-fault ground motions, the feasibility of a performance-based design method was validated. Furthermore, to ensure the predicted performance of the isolated bridges during a strong earthquake, a relatively quantitative design in structural details derived from the stirrup ratio of piers, expansion joints gap, supported length of capping beams, and limited vertical displacement response was obtained.


Author(s):  
Wenpeng Wu ◽  
Shiguo Long ◽  
Huihui Li

<p>Seismic resistant retainer is an important component for seismic design of the medium‐small span bridges. However, it’s difficult for the bridge engineers to design a reasonable transverse retainer due to deficiency of design detail in most of current seismic design specifications. Therefore, this paper proposed a prestressed prefabricated concrete retainer that utilize the ultra‐high performance concrete (UHPC). Firstly, the structural characteristics and the seismic design method of the new proposed retainer is illustrated. The OpenSEES model of the case‐study bridge were simulated by considering three different types of seismic resistant retainers. A total of ten high intensity ground motions were selected to conduct the nonlinear time history analysis (NTHA). Subsequently, to investigate the seismic performance of the proposed UHPC retainer, this paper performs the comparative study of seismic responses for different bridge components. It is concluded that, the proposed retainer can provide excellent displacement capacity and help to reduce the seismic damage of bridge piers significantly. In addition, the new retainer has strong ability to keep self‐centering to help the bridge reducing the residual displacement of superstructure under strong seismic events. The proposed UHPC retainer is applicable to the rapid prestressed prefabricated construction process and has a clear load transfer mode under earthquake actions. Therefore, it is a good candidate to the multi‐level performance‐based seismic design of the medium‐small span bridges.</p>


Author(s):  
C. S. Tsai ◽  
Tsu-Cheng Chiang ◽  
Bo-Jen Chen

Base isolation technologies have been proven to be very efficient in protecting structures from seismic hazards during experimental and theoretical studies. In recent years, there have been more and more engineering applications using base isolators to upgrade the seismic resistibility of structures. Optimum design of the base isolator can lessen the undesirable seismic hazard with the most efficiency. Hence, tracing the nonlinear behavior of the base isolator with good accuracy is important in the engineering profession. In order to predict the nonlinear behavior of base isolated structures precisely, hundreds even thousands of degrees-of-freedom and iterative algorithm are required for nonlinear time history analysis. In view of this, a simple and feasible exact formulation without any iteration has been proposed in this study to calculate the seismic responses of structures with base isolators. Comparison between the experimental results from shaking table tests conducted at National Center for Research on Earthquake Engineering in Taiwan and the analytical results show that the proposed method can accurately simulate the seismic behavior of base isolated structures with elastomeric bearings. Hence, the proposed concept can be used as a reliable tool for engineering professions for preliminary design.


Sign in / Sign up

Export Citation Format

Share Document